neuropercolation/evaluation/4Layer Resultant Evolution.py

266 lines
12 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 21 14:59:22 2023
@author: astral
"""
import json
import math as m
import numpy as np
from numpy.linalg import norm
from datetime import datetime
from random import sample as choose
from plot import qtplot
eps_space = list(np.linspace(0.01,0.2,20))
def resultant(sample):
phase_x = [m.cos(ind) for ind in sample]
phase_y = [m.sin(ind) for ind in sample]
return (np.average(phase_x), np.average(phase_y))
def H2(x):
return -x*m.log2(x)-(1-x)*m.log2(1-x)
extremes = None
maxdt = 300
for dim in [9]:
for eps in eps_space:
path=f'/cloud/Public/_data/neuropercolation/4lay/cons=7-knight_steps=1000100/dim=07/batch=0/'
try:
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f:
phase_diff = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
activation = json.load(f)[100:]
osc = list(zip(*activation))
phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f:
json.dump(list(phase_diff), f, indent=1)
all_res = norm(resultant(phase_diff))
av_diff = np.arccos(all_res)
try:
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f:
ei = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f:
channels = json.load(f)[100:]
ei = [np.sum(cha)*(1-H2(eps)) for cha in channels]
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f:
json.dump(ei, f, indent=1)
pha_center = av_diff
pha_dev = m.pi/32
last_sync = lambda i: i if abs(phase_diff[i])<0.08*m.pi else last_sync(i-1)
last_orth = lambda i: i if 0.42*m.pi<abs(phase_diff[i])<0.58*m.pi else last_orth(i-1)
dev_ind = sorted([i for i,val in enumerate(ei[:-maxdt]) if (pha_center-pha_dev)<=abs(phase_diff[i])<=(pha_center+pha_dev)], key = lambda i: ei[i])
dev_in_ind = [i for i in dev_ind if last_sync(i)<last_orth(i)]
dev_out_ind = [i for i in dev_ind if last_sync(i)>last_orth(i)]
devm_in_ind = [i for i in dev_in_ind if phase_diff[i]<0]
devp_in_ind = [i for i in dev_in_ind if phase_diff[i]>0]
devm_out_ind = [i for i in dev_out_ind if phase_diff[i]<0]
devp_out_ind = [i for i in dev_out_ind if phase_diff[i]>0]
if extremes is None:
extremes = len(dev_in_ind)//4000*1000
print(len(dev_out_ind), len(dev_in_ind))
#print(all_res, av_diff)
bot_in_ind = dev_in_ind[ :extremes]
top_in_ind = dev_in_ind[-extremes: ]
bot_out_ind = dev_out_ind[ :extremes]
top_out_ind = dev_out_ind[-extremes: ]
bot_ind = bot_in_ind + bot_out_ind
top_ind = top_in_ind + top_out_ind
botm_in_ind = [i for i in bot_in_ind if phase_diff[i]<0]
botp_in_ind = [i for i in bot_in_ind if phase_diff[i]>0]
topm_in_ind = [i for i in top_in_ind if phase_diff[i]<0]
topp_in_ind = [i for i in top_in_ind if phase_diff[i]>0]
botm_out_ind = [i for i in bot_out_ind if phase_diff[i]<0]
botp_out_ind = [i for i in bot_out_ind if phase_diff[i]>0]
topm_out_ind = [i for i in top_out_ind if phase_diff[i]<0]
topp_out_ind = [i for i in top_out_ind if phase_diff[i]>0]
# bot_ei_pool = [ei for ei in enumerate(ei[:-maxdt]) if ei[1] <= bot_ei[1]]
# top_ei_pool = [ei for ei in enumerate(ei[:-maxdt]) if ei[1] >= top_ei[1]]
# bot_eis = choose(bot_ei_pool, extremes)
# top_eis = choose(top_ei_pool, extremes)
# bot_ind = [enum[0] for enum in bot_ei]
# top_ind = [enum[0] for enum in top_ei]
botm_in_res = []
topm_in_res = []
devm_in_res = []
botp_in_res = []
topp_in_res = []
devp_in_res = []
botm_out_res = []
topm_out_res = []
devm_out_res = []
botp_out_res = []
topp_out_res = []
devp_out_res = []
bot_ei = []
top_ei = []
dev_ei = []
tot_res = []
tot_ei = []
for dt in range(maxdt):
botm_in_res.append( resultant([phase_diff[i+dt] for i in botm_in_ind]) )
topm_in_res.append( resultant([phase_diff[i+dt] for i in topm_in_ind]) )
devm_in_res.append( resultant([phase_diff[i+dt] for i in devm_in_ind]) )
botp_in_res.append( resultant([phase_diff[i+dt] for i in botp_in_ind]) )
topp_in_res.append( resultant([phase_diff[i+dt] for i in topp_in_ind]) )
devp_in_res.append( resultant([phase_diff[i+dt] for i in devp_in_ind]) )
botm_out_res.append( resultant([phase_diff[i+dt] for i in botm_out_ind]) )
topm_out_res.append( resultant([phase_diff[i+dt] for i in topm_out_ind]) )
devm_out_res.append( resultant([phase_diff[i+dt] for i in devm_out_ind]) )
botp_out_res.append( resultant([phase_diff[i+dt] for i in botp_out_ind]) )
topp_out_res.append( resultant([phase_diff[i+dt] for i in topp_out_ind]) )
devp_out_res.append( resultant([phase_diff[i+dt] for i in devp_out_ind]) )
bot_ei.append( np.average([ei[i+dt] for i in bot_ind]) )
top_ei.append( np.average([ei[i+dt] for i in top_ind]) )
dev_ei.append( np.average([ei[i+dt] for i in dev_ind]) )
tot_res.append( resultant(phase_diff[dt:dt-maxdt]) )
tot_ei.append( np.average(ei[dt:dt-maxdt]) )
if dt%100==99:
print(f'Done dt={dt}')
bm_in_res = list(zip(*botm_in_res))
tm_in_res = list(zip(*topm_in_res))
dm_in_res = list(zip(*devm_in_res))
bp_in_res = list(zip(*botp_in_res))
tp_in_res = list(zip(*topp_in_res))
dp_in_res = list(zip(*devp_in_res))
bm_out_res = list(zip(*botm_out_res))
tm_out_res = list(zip(*topm_out_res))
dm_out_res = list(zip(*devm_out_res))
bp_out_res = list(zip(*botp_out_res))
tp_out_res = list(zip(*topp_out_res))
dp_out_res = list(zip(*devp_out_res))
t_res = list(zip(*tot_res))
space = np.linspace(0,2*m.pi,101)
qtplot(f'Diachronic resultant +/- for eps={round(eps,3):.3f} with dim={dim} with 4 layers',
[bm_in_res[0], tm_in_res[0], dm_in_res[0], bp_in_res[0], tp_in_res[0], dp_in_res[0],
bm_out_res[0], tm_out_res[0], dm_out_res[0], bp_out_res[0], tp_out_res[0], dp_out_res[0],
t_res[0], np.cos(space)],
[bm_in_res[1], tm_in_res[1], dm_in_res[1], bp_in_res[1], tp_in_res[1], dp_in_res[1],
bm_out_res[1], tm_out_res[1], dm_out_res[1], bp_out_res[1], tp_out_res[1], dp_out_res[1],
t_res[1], np.sin(space)],
['Resultant ev in of bottom {extremes} ei -', 'Resultant ev in of top {extremes} ei -',
'Resultant ev in of phase filtered ei -',
'Resultant ev in of bottom {extremes} ei +', 'Resultant ev in of top {extremes} ei +',
'Resultant ev in of phase filtered ei +',
'Resultant ev out of bottom {extremes} ei -', 'Resultant ev out of top {extremes} ei -',
'Resultant ev out of phase filtered ei -',
'Resultant ev out of bottom {extremes} ei +', 'Resultant ev out of top {extremes} ei +',
'Resultant ev out of phase filtered ei +',
'Average Resultant', 'Unit Circle'],
x_tag = 'x',
y_tag = 'y',
lw=1,
export=True,
path=path,
filename=f'Diachronic Resultant filtered pm inout eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
close=True)
qtplot(f'Diachronic resultant +/- for eps={round(eps,3):.3f} with dim={dim} with 4 layers',
[bm_in_res[0], tm_in_res[0], dm_in_res[0], bp_in_res[0], tp_in_res[0], dp_in_res[0],
t_res[0], np.cos(space)],
[bm_in_res[1], tm_in_res[1], dm_in_res[1], bp_in_res[1], tp_in_res[1], dp_in_res[1],
t_res[1], np.sin(space)],
['Resultant ev in of bottom {extremes} ei -', 'Resultant ev in of top {extremes} ei -',
'Resultant ev in of phase filtered ei -',
'Resultant ev in of bottom {extremes} ei +', 'Resultant ev in of top {extremes} ei +',
'Resultant ev in of phase filtered ei +',
'Average Resultant', 'Unit Circle'],
x_tag = 'x',
y_tag = 'y',
lw=1,
export=True,
path=path,
filename=f'Evolution of Resultant filtered pm in eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
close=True)
qtplot(f'Diachronic resultant +/- for eps={round(eps,3):.3f} with dim={dim} with 4 layers',
[bm_out_res[0], tm_out_res[0], dm_out_res[0], bp_out_res[0], tp_out_res[0], dp_out_res[0],
t_res[0], np.cos(space)],
[bm_out_res[1], tm_out_res[1], dm_out_res[1], bp_out_res[1], tp_out_res[1], dp_out_res[1],
t_res[1], np.sin(space)],
['Resultant ev out of bottom {extremes} ei -', 'Resultant ev out of top {extremes} ei -',
'Resultant ev out of phase filtered ei -',
'Resultant ev out of bottom {extremes} ei +', 'Resultant ev out of top {extremes} ei +',
'Resultant ev out of phase filtered ei +',
'Average Resultant', 'Unit Circle'],
x_tag = 'x',
y_tag = 'y',
lw=1,
export=True,
path=path,
filename=f'Evolution of Resultant filtered pm out eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
close=True)
# qtplot(f'Diachronic ei +/- for eps={round(eps,3):.3f} with dim={dim} with 4 layers',
# [np.array(range(maxdt))]*4,
# [bot_ei, top_ei, dev_ei, tot_ei],
# ['EI ev of bottom {extremes} ei', 'EI ev of top {extremes} ei',
# 'EI ev of phase filtered ei', 'Average EI'],
# x_tag = 'dt',
# y_tag = 'average ei',
# export=True,
# path=path,
# filename=f'Diachronic EI filtered eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
# close=True)
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')
# qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers',
# [[0]+eps_space]*2,
# [max(av_ei)*diff_res, av_ei],
# ['Resultant', 'avEI'],
# export=True,
# path=path,
# filename=f'Resultant and EI for dim={dim}.png',
# close=True)