neuropercolation/cellular_automaton/automaton.py

105 lines
3.4 KiB
Python
Raw Normal View History

2019-02-23 15:20:48 +00:00
"""
Copyright 2019 Richard Feistenauer
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
2019-01-31 12:38:48 +00:00
import multiprocessing
from multiprocessing.sharedctypes import RawValue
from ctypes import c_int
2018-12-01 14:14:22 +00:00
class CellularAutomatonProcessor:
2019-02-24 11:37:26 +00:00
""" This class is responsible for the evolution of the cells. """
def __init__(self, cellular_automaton):
self._ca = cellular_automaton
def evolve_x_times(self, x):
2019-02-24 11:37:26 +00:00
""" Evolve all cells x times.
:param x: The number of evolution steps processed with the call of this method.
"""
for x in range(x):
self.evolve()
def evolve(self):
2019-02-24 11:37:26 +00:00
""" Evolve all cells """
self._ca.current_evolution_step += 1
2019-02-16 17:05:26 +00:00
i = self._ca.current_evolution_step
r = self._ca.evolution_rule.evolve_cell
2019-02-16 17:05:26 +00:00
list(map(lambda c: c.evolve_if_ready(r, i), tuple(self._ca.cells.values())))
2019-02-23 15:20:10 +00:00
def get_dimension(self):
return self._ca.dimension
def get_cells(self):
return self._ca.cells
def get_current_evolution_step(self):
return self._ca.current_evolution_step
def get_current_rule(self):
return self._ca.evolution_rule
class CellularAutomatonMultiProcessor(CellularAutomatonProcessor):
2019-02-24 11:37:26 +00:00
""" This is a variant of CellularAutomatonProcessor that uses multi processing.
The evolution of the cells will be outsourced to new processes.
WARNING:
This variant has high memory use!
The inter process communication overhead can make this variant slower than single processing!
"""
def __init__(self, cellular_automaton, process_count: int = 2):
multiprocessing.freeze_support()
if process_count < 1:
raise ValueError
super().__init__(cellular_automaton)
self.evolve_range = range(len(self._ca.cells))
self._ca.current_evolution_step = RawValue(c_int, self._ca.current_evolution_step)
2019-02-24 11:37:26 +00:00
self.__init_processes(process_count)
2019-02-16 17:05:26 +00:00
2019-02-24 11:37:26 +00:00
def __init_processes(self, process_count):
self.pool = multiprocessing.Pool(processes=process_count,
initializer=_init_process,
initargs=(tuple(self._ca.cells.values()),
self._ca.evolution_rule,
2019-02-23 15:20:10 +00:00
self._ca.current_evolution_step))
def evolve(self):
2019-02-23 15:20:48 +00:00
self._ca.current_evolution_step.value += 1
self.pool.map(_process_routine, self.evolve_range)
2019-02-23 15:20:10 +00:00
def get_current_evolution_step(self):
return self._ca.current_evolution_step.value
global_cells = None
global_rule = None
2019-02-16 17:05:26 +00:00
global_evolution_step = None
def _init_process(cells, rule, index):
2019-02-16 17:05:26 +00:00
global global_rule, global_cells, global_evolution_step
global_cells = cells
global_rule = rule
2019-02-16 17:05:26 +00:00
global_evolution_step = index
def _process_routine(i):
2019-02-16 17:05:26 +00:00
global_cells[i].evolve_if_ready(global_rule.evolve_cell, global_evolution_step.value)