Add riding eps example

This commit is contained in:
timofej 2023-12-10 21:47:15 +00:00
parent 6513f4e2b4
commit 076493fc6d
13 changed files with 291 additions and 54 deletions

View File

@ -51,6 +51,7 @@ def __calc_chi(mode='density'):
lastkurt=None lastkurt=None
for dim in dims: for dim in dims:
try: try:
1/0
with open(path+f"magnets/magnetisation_{mode}_dim={dim:02}.txt", 'r', encoding='utf-8') as f: with open(path+f"magnets/magnetisation_{mode}_dim={dim:02}.txt", 'r', encoding='utf-8') as f:
magnet = json.load(f) magnet = json.load(f)
with open(path+f"suscepts/susceptibility_{mode}_dim={dim:02}.txt", 'r', encoding='utf-8') as f: with open(path+f"suscepts/susceptibility_{mode}_dim={dim:02}.txt", 'r', encoding='utf-8') as f:
@ -87,7 +88,7 @@ def __calc_chi(mode='density'):
else: else:
raise NotImplementedError raise NotImplementedError
mag = round(abs(mag),6) mag = round(abs(dmag),6)
fluct = round(mag2-mag**2,6) fluct = round(mag2-mag**2,6)
tail = round(mag4/mag2**2,6) tail = round(mag4/mag2**2,6)

View File

@ -0,0 +1,71 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 30 14:25:12 2022
@author: timof
"""
import sys
import os
import json
# from plot import qtplot
from scipy.io import wavfile
import math as m
import numpy as np
vect = np.vectorize
@vect
def log2(x):
try:
return m.log2(x)
except ValueError:
if x==0:
return float(0)
else:
raise
def new_folder(path):
if not os.path.exists(path):
os.makedirs(path)
return path
phase = np.vectorize(lambda x,y: (m.atan2(y,x)+m.pi)%(2*m.pi)-m.pi)
diff = np.vectorize(lambda x,y: (y-x+m.pi)%(2*m.pi)-m.pi)
H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x)
path = '/cloud/Public/_data/neuropercolation/2lay/steps=500000_rising/'
suffix = ''
chi = chr(967)
vareps = chr(949)
vals = [[],[]]
runsteps = 1000100
eps_space = np.linspace(0.005, 0.5, 100)
eps_space = eps_space[1::2]
dims = [121]#+[16,49]
mode='density'
ma=[]
s=[]
k=[]
mk=[]
lastkurt=None
for dim in dims:
dimpath = new_folder(path + f'dim={dim:03d}/')
for epsilon in [0.000]:
with open(dimpath+f"eps={round(epsilon,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
activation = np.array(json.load(f)[::-1])
# activation = list(zip(*activation))
wavfile.write(dimpath+f"eps={round(epsilon,3):.3f}_activation_48k.wav_rev",48000,activation)

View File

@ -345,13 +345,13 @@ qtplot(f'Q facor for odd automaton sizes',
# FWHM=json.load(f) # FWHM=json.load(f)
qtplot(f'Dominant frequency', qtplot(f'Dominant frequency',
[[0]+list(eps_space[:-1])]*3, [[0]+list(eps_space[:20])]*3,
[[0]+FMAX[-1],[0]+LHM[-1],[0]+UHM[-1]], [[0]+FMAX[:20],[0]+LHM[:20],[0]+UHM[:20]],
# [f'dim={dim}x{dim}' for dim in dims], # [f'dim={dim}x{dim}' for dim in dims],
['dominant frequency', 'lesser half maximum', 'upper half maximum'], ['FMAX', 'FMAX-FWHM/2', 'FMAX+FWHM/2'],
#colors=['g','r','r'], colors=['r','r','g'],
y_tag = 'frequency f', y_tag = 'frequency f',
y_log = True, y_log = False,
export=True, export=True,
path=sigpath, path=sigpath,
filename=f'FMAX+FWHMto50_plot_{parts}parts_accum={accum}.png', filename=f'FMAX+FWHMto50_plot_{parts}parts_accum={accum}.png',

View File

@ -89,6 +89,7 @@ qtplot(f"Mean effect integration over noise level",
[[0]+phi for phi in PHI[::-1]], [[0]+phi for phi in PHI[::-1]],
[f'dim={dim:02d}x{dim:02d}' for dim in dims[::-1]], [f'dim={dim:02d}x{dim:02d}' for dim in dims[::-1]],
y_tag = f'effect integration {varphi}', y_tag = f'effect integration {varphi}',
x_tag = f'noise level {vareps}',
export=True, export=True,
path=dimpath+"", path=dimpath+"",
filename=f'eps={round(epsilon,3):.3f}_evolution.png', filename=f'eps={round(epsilon,3):.3f}_evolution.png',

View File

@ -0,0 +1,77 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 30 14:25:12 2022
@author: timof
"""
import sys
import os
import json
from plot import qtplot
import math as m
import numpy as np
vect = np.vectorize
@vect
def log2(x):
try:
return m.log2(x)
except ValueError:
if x==0:
return float(0)
else:
raise
def new_folder(path):
if not os.path.exists(path):
os.makedirs(path)
return path
path = '/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps=100100_causal/dim=09/batch=0/'
suffix = ''
chi = chr(967)
vareps = chr(949)
vals = [[],[]]
runsteps = 1000100
eps_space = np.linspace(0.005, 0.5, 100)
eps_space = eps_space[1::2]
dims = list(range(3,10))#+[16,49]
mode='density'
ma=[]
s=[]
k=[]
mk=[]
lastkurt=None
for dim in dims[-1:]:
dimpath = new_folder(path + f'dim={dim:02}/')
for epsilon in eps_space[:]:
with open(path+f"eps={round(epsilon,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f:
phase_diff = np.array(json.load(f)[:500])
with open(path+f"eps={round(epsilon,3):.3f}_ei.txt", 'r', encoding='utf-8') as f:
phase_diff = np.array(json.load(f)[:500])
qtplot(f"Phase relation time series for eps={round(epsilon,3):.3f}",
[list(range(500))]*2,
[phase_diff],
x_tag = 'time step',
y_tag = f'phase diffe´rence',
y_range = (-m.pi,m.pi),
export=True,
path=dimpath+"evolution/",
filename=f'eps={round(epsilon,3):.3f}_evolution.png',
close=False)
mode = 'density'
#%%

View File

@ -71,20 +71,20 @@ for _eps in _epses[11:21]:
# sign_p_list.append(sign_p) # sign_p_list.append(sign_p)
# with open(savepath+f"phasediff_means.txt", 'w', encoding='utf-8') as f: with open(savepath+f"phasediff_means.txt", 'w', encoding='utf-8') as f:
# json.dump(meanlist, f, indent=1) json.dump(meanlist, f, indent=1)
# with open(savepath+f"phasediff_stds.txt", 'w', encoding='utf-8') as f: with open(savepath+f"phasediff_stds.txt", 'w', encoding='utf-8') as f:
# json.dump(stdlist, f, indent=1) json.dump(stdlist, f, indent=1)
# with open(savepath+f"phasediff_integrals.txt", 'w', encoding='utf-8') as f: with open(savepath+f"phasediff_integrals.txt", 'w', encoding='utf-8') as f:
# json.dump(integrallist, f, indent=1) json.dump(integrallist, f, indent=1)
# with open(savepath+f"phasediff_cohends.txt", 'w', encoding='utf-8') as f: with open(savepath+f"phasediff_cohends.txt", 'w', encoding='utf-8') as f:
# json.dump(cohendlist, f, indent=1) json.dump(cohendlist, f, indent=1)
# with open(savepath+f"phasediff_norm_ps.txt", 'w', encoding='utf-8') as f: with open(savepath+f"phasediff_norm_ps.txt", 'w', encoding='utf-8') as f:
# json.dump(norm_p_list, f, indent=1) json.dump(norm_p_list, f, indent=1)
# with open(savepath+f"phasediff_ttest_ps.txt", 'w', encoding='utf-8') as f: with open(savepath+f"phasediff_ttest_ps.txt", 'w', encoding='utf-8') as f:
# json.dump(ttest_p_list, f, indent=1) json.dump(ttest_p_list, f, indent=1)
# with open(savepath+f"phasediff_sign_ps.txt", 'w', encoding='utf-8') as f: with open(savepath+f"phasediff_sign_ps.txt", 'w', encoding='utf-8') as f:
# json.dump(sign_p_list, f, indent=1) json.dump(sign_p_list, f, indent=1)
# stdlowlist = [meanlist[eps] - stdlist[eps] for eps in range(len(meanlist))] # stdlowlist = [meanlist[eps] - stdlist[eps] for eps in range(len(meanlist))]
# stdhighlist = [meanlist[eps] + stdlist[eps] for eps in range(len(meanlist))] # stdhighlist = [meanlist[eps] + stdlist[eps] for eps in range(len(meanlist))]
@ -105,19 +105,19 @@ for _eps in _epses[11:21]:
filename=f'Resultant reduction disconnect eps={_eps} dim={_dim} extremes={_ext}.png', filename=f'Resultant reduction disconnect eps={_eps} dim={_dim} extremes={_ext}.png',
close=True) close=True)
# qtplot(f'Mean causal phase reduction for dt={_dt} dim={_dim} with 4 layers', qtplot(f'Mean causal phase reduction for dt={_dt} dim={_dim} with 4 layers',
# [_epsilons]*3, [_epsilons]*3,
# [stdlowlist, stdhighlist, meanlist], [stdlowlist, stdhighlist, meanlist],
# ['Low standard deviation', ['Low standard deviation',
# 'High standard deviation', 'High standard deviation',
# 'Mean'], 'Mean'],
# colors=['r','r','g'], colors=['r','r','g'],
# x_tag = f'noise level {chr(949)}', x_tag = f'noise level {chr(949)}',
# y_tag = 'abs phase reduction', y_tag = 'abs phase reduction',
# export=True, export=True,
# path=savepath, path=savepath,
# filename=f'Mean phase reduction dim={_dim} extremes={_ext}.png', filename=f'Mean phase reduction dim={_dim} extremes={_ext}.png',
# close=True) close=True)
# qtplot(f'Phase reduction probability for dt={_dt} dim={_dim} with 4 layers', # qtplot(f'Phase reduction probability for dt={_dt} dim={_dim} with 4 layers',
# [_epsilons], # [_epsilons],
# [integrallist], # [integrallist],

View File

@ -13,11 +13,12 @@ from numpy.linalg import norm
from datetime import datetime from datetime import datetime
from random import sample as choose from random import sample as choose
from random import random from random import random
from numba import jit, njit, prange import itertools
#from numba import jit, njit, prange
from plot import qtplot # from plot import qtplot
from neuropercolation import Simulate4Layers # from neuropercolation import Simulate4Layers
eps_space = list(np.linspace(0.01,0.2,20)) eps_space = list(np.linspace(0.01,0.2,20))
def new_folder(path): def new_folder(path):
@ -29,7 +30,7 @@ phase = np.vectorize(lambda x,y: (m.atan2(y,x)+m.pi)%(2*m.pi)-m.pi)
diff = np.vectorize(lambda x,y: (y-x+m.pi)%(2*m.pi)-m.pi) diff = np.vectorize(lambda x,y: (y-x+m.pi)%(2*m.pi)-m.pi)
H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x) H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x)
@njit
def neighbor(digit0, digit1, lenght): def neighbor(digit0, digit1, lenght):
layer = int(lenght) layer = int(lenght)
dim = int(np.sqrt(layer)) dim = int(np.sqrt(layer))
@ -43,9 +44,11 @@ def neighbor(digit0, digit1, lenght):
else: else:
return False return False
@njit
def kcomb(zp,zm): def kcomb(zp,zm):
if zp>2: if zp+zm>5:
val=None
elif zp>2:
val=1 val=1
elif zm>2: elif zm>2:
val=0 val=0
@ -62,7 +65,24 @@ def kcomb(zp,zm):
else: else:
raise NotImplementedError(zp,zm) raise NotImplementedError(zp,zm)
return val return val
#%%
neighbourcomb = [[(i,j) for j in range(6)] for i in range(6)]
probcombs = [[kcomb(*n) for n in row] for row in neighbourcomb]
posscombs = {val for row in probcombs for val in row}
probcombs1 = [kcomb(n,4-n) for n in range(5)]
eta = lambda eps: 1-eps
etastar = lambda eps,kp: kp*(1-eps)+(1-kp)*eps
epsstar = lambda eps,kp: kp*eps+(1-kp)*(1-eps)
KL = lambda eps,kp: eta(eps)*m.log2(eta(eps)/etastar(eps,kp)) + eps*m.log2(eps/epsstar(eps,kp)) if kp is not None else 0
phi_mat = lambda eps: [[KL(eps,kcomb(i,j)) for j in range(6)] for i in range(6)]
phi_vals = lambda eps,df=4: sorted({sum([KL(eps,kp) for kp in kps]) for kps in itertools.product(*[[1,0.5]]*df)})
phi_sing = lambda eps: KL(eps,kcomb(1,0))
phi_lims = lambda eps: [phi_sing(eps)+val for val in phi_vals(eps)]
#%%
path = new_folder('/cloud/Public/_data/neuropercolation/1lay/mips/') path = new_folder('/cloud/Public/_data/neuropercolation/1lay/mips/')
@ -125,22 +145,29 @@ def MIP(dim,statestr,eps):
return mip,lophi return mip,lophi
def calc_mips(dim,eps): def calc_mips(dim,eps,save=True):
mip = [] mips = [[] for i in range(5)]
statestr='0'*dim**2 statestr='0'*dim**2
lims = phi_lims(eps)
# statestr=statestr.translate(str.maketrans('','','.-=')) # statestr=statestr.translate(str.maketrans('','','.-='))
for parti in range(1,2**(dim**2-1)): for parti in range(1,2**(dim**2-1)):
partstr = bin(parti)[2:].zfill(dim**2) partstr = bin(parti)[2:].zfill(dim**2)
curphi = phi(dim,statestr,partstr,eps) curphi = phi(dim,statestr,partstr,eps)
mip.append(round(curphi,6)) for cha,mip in enumerate(mips):
if curphi<lims[cha]:
mip.append(parti)
print(f'Part {partstr} in mips[{cha}] with phi={curphi}')
mipath = new_folder(path+f'dim={dim:02d}/') mipath = new_folder(path+f'dim={dim:02d}/')
with open(mipath+f"eps={round(eps,3):.3f}_mips.txt", 'w', encoding='utf-8') as f: for cha,mip in enumerate(mips):
json.dump(mip, f, indent=1) with open(mipath+f"eps={round(eps,3):.3f}_mipis_{cha}.txt", 'w', encoding='utf-8') as f:
json.dump(mip, f, indent=1) if save else None
return mips
def smartMIP(dim,statestr,eps): def smartMIP(dim,statestr,eps):
lophi=np.inf lophi=np.inf
mip = [] mip = []
phi_lims = phi_vals(eps)
for parti in range(0,dim**2): for parti in range(0,dim**2):
partstr = bin(2**parti)[2:].zfill(dim**2) partstr = bin(2**parti)[2:].zfill(dim**2)

View File

@ -23,7 +23,8 @@ for eps in eps_ep:
boots.append(ps) boots.append(ps)
lower=[0.001]*len(ps)
higher=[0.999]*len(ps)
qtplot(f"Bootstrapping p-value for noise level {eps}",[range(dt+1)],boots[-1:],[f''],y_tag='p-value',y_log=False) qtplot(f"Bootstrapping p-value for noise level {eps}",[range(dt+1)]*3,[lower,higher,ps],[f'right-sided p-value','p=0.999 limit','p=0.001 limit'],colors=['w','r','g'],y_tag='p-value',y_log=False)

View File

@ -0,0 +1,25 @@
from plot import qtplot
import json
import math as ma
import numpy as np
path='/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps=1000100_diares/dim=09/batch=0/allpos_ei_samples=10000/dt=1/'
eps_sp=np.linspace(0.005,0.2,40)
eps_ep=eps_sp
extremes=10000
strength=100000
savepath=path+f'extremes={extremes}_bootstrength={strength}/'
with open(path+f"phasediff_means.txt", 'r', encoding='utf-8') as f:
means=json.load(f)
with open(path+f"phasediff_stds.txt", 'r', encoding='utf-8') as f:
stds=json.load(f)
hirim=[means[i]+stds[i] for i in range(len(means))]
lorim=[means[i]-stds[i] for i in range(len(means))]
qtplot(f'Reduction of phase deviation to noise level',[[0]+list(eps_sp[:40])]*3,[[0]+lorim,[0]+means,[0]+hirim],['mean-std','mean','mean+std'],colors=['r','g','r'],y_tag='phase difference',y_log=False)

View File

@ -0,0 +1,29 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 18 19:05:04 2023
@author: astral
"""
from datetime import datetime
import numpy as np
from neuropercolation import Simulate2Layers
eps_space = np.linspace(0.005,0.5,100)
#eps_space = np.linspace(0.135,0.15,4)
dims=list(range(21,27,2))
for dim in [33]:
for eps in [0]:
eps = round(eps,3)
sim = Simulate2Layers(dim,
eps,
steps=5000,
draw='pygame',
save='simple',
path=f'/cloud/Public/_data/neuropercolation/2lay/steps=500000_rising/dim={dim:02}/',
rising=True,
fps=60,
)
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')

View File

@ -19,7 +19,7 @@ eps_space = np.linspace(0.005,0.5,100)
#eps_space = np.linspace(0.135,0.15,4) #eps_space = np.linspace(0.135,0.15,4)
stp = 1000100 stp = 1000100
dims = range(9,10) dims = range(25,26)
batches = 1 batches = 1
path = f'/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps=1000100_diares/dim=09/batch=0/' path = f'/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps=1000100_diares/dim=09/batch=0/'
@ -40,7 +40,7 @@ for dim in dims:
for batch in range(max_bat, max_bat+batches): for batch in range(max_bat, max_bat+batches):
savepath = dimpath + f'batch={batch}' savepath = dimpath + f'batch={batch}'
new_folder(savepath) new_folder(savepath)
for eps in [0.3]:#list(eps_space[61::2]): for eps in [0.05]:#list(eps_space[61::2]):
eps = round(eps,3) eps = round(eps,3)
initstate = [[0,0],[0,0]] initstate = [[0,0],[0,0]]
sim = Simulate4Layers(dim, sim = Simulate4Layers(dim,
@ -49,10 +49,10 @@ for dim in dims:
init=initstate, init=initstate,
steps=stp, steps=stp,
noeffect=-1, noeffect=-1,
#fps=20, fps=60,
draw=None, draw='pygame',
res=6, res=10,
save='all', save=None,
path=path, path=path,
) )
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')

View File

@ -279,7 +279,7 @@ class NeuropercolationCoupled(CellularAutomatonCreator, abc.ABC):
self.__evolve_cells(self._current_state, self._next_state) self.__evolve_cells(self._current_state, self._next_state)
self._current_state, self._next_state = self._next_state, self._current_state self._current_state, self._next_state = self._next_state, self._current_state
self._evolution_step += 1 self._evolution_step += 1
def __evolve_cells(self, this_state, next_state): #this will be overwritten by heir def __evolve_cells(self, this_state, next_state): #this will be overwritten by heir
evolve_cell = self.__evolve_cell evolve_cell = self.__evolve_cell
evolution_rule = self.evolve_rule evolution_rule = self.evolve_rule

View File

@ -248,6 +248,7 @@ class Simulate2Layers:
save=None, save=None,
path='/cloud/Public/_data/neuropercolation/test/', path='/cloud/Public/_data/neuropercolation/test/',
state_to_color_cb=None, state_to_color_cb=None,
rising=False,
*args, **kwargs): *args, **kwargs):
""" """
Creates a window to render a 2D CellularAutomaton. Creates a window to render a 2D CellularAutomaton.
@ -275,6 +276,7 @@ class Simulate2Layers:
self.__state_list = [] self.__state_list = []
self.__activation_list = [] self.__activation_list = []
self.__channel_list = [] self.__channel_list = []
self.__rising = rising
self.run(evolutions_per_second=fps, last_evolution_step=steps) self.run(evolutions_per_second=fps, last_evolution_step=steps)
def run(self, def run(self,
@ -293,6 +295,9 @@ class Simulate2Layers:
while self.__active and self._not_at_the_end(last_evolution_step): while self.__active and self._not_at_the_end(last_evolution_step):
time_ca_start = time.time() time_ca_start = time.time()
self._cellular_automaton.evolve(evolutions_per_draw) self._cellular_automaton.evolve(evolutions_per_draw)
if self.__rising:
self._cellular_automaton.epsilon = self._cellular_automaton.evolution_step/last_evolution_step*0.5
self._track() self._track()
if self.__draw_engine is not None: if self.__draw_engine is not None:
time_ca_end = time.time() time_ca_end = time.time()