added new neighborhoods
This commit is contained in:
parent
9964e3b483
commit
0f63e5bbe6
@ -1,4 +1,5 @@
|
|||||||
from .neighborhood import Neighborhood, MooreNeighborhood, VonNeumannNeighborhood, EdgeRule
|
from .neighborhood import Neighborhood, MooreNeighborhood, VonNeumannNeighborhood, \
|
||||||
|
EdgeRule, HexagonalNeighborhood, RadialNeighborhood
|
||||||
from .rule import Rule
|
from .rule import Rule
|
||||||
from .factory import CAFactory
|
from .factory import CAFactory
|
||||||
from .display import CAWindow
|
from .display import CAWindow
|
||||||
|
@ -17,6 +17,7 @@ limitations under the License.
|
|||||||
import enum
|
import enum
|
||||||
import operator
|
import operator
|
||||||
import itertools
|
import itertools
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
class EdgeRule(enum.Enum):
|
class EdgeRule(enum.Enum):
|
||||||
@ -43,23 +44,23 @@ class Neighborhood:
|
|||||||
:return: list of absolute coordinates for the cells neighbors.
|
:return: list of absolute coordinates for the cells neighbors.
|
||||||
"""
|
"""
|
||||||
self.__grid_dimensions = grid_dimensions
|
self.__grid_dimensions = grid_dimensions
|
||||||
return list(self.__neighbors_generator(cell_coordinate))
|
return list(self._neighbors_generator(cell_coordinate))
|
||||||
|
|
||||||
def get_id_of_neighbor_from_relative_coordinate(self, rel_coordinate):
|
def get_id_of_neighbor_from_relative_coordinate(self, rel_coordinate):
|
||||||
return self._rel_neighbors.index(rel_coordinate)
|
return self._rel_neighbors.index(rel_coordinate)
|
||||||
|
|
||||||
def __neighbors_generator(self, cell_coordinate):
|
def _neighbors_generator(self, cell_coordinate):
|
||||||
if not self.__does_ignore_edge_cell_rule_apply(cell_coordinate):
|
if not self._does_ignore_edge_cell_rule_apply(cell_coordinate):
|
||||||
for rel_n in self._rel_neighbors:
|
for rel_n in self._rel_neighbors:
|
||||||
yield from self.__calculate_abs_neighbor_and_decide_validity(cell_coordinate, rel_n)
|
yield from self._calculate_abs_neighbor_and_decide_validity(cell_coordinate, rel_n)
|
||||||
|
|
||||||
def __calculate_abs_neighbor_and_decide_validity(self, cell_coordinate, rel_n):
|
def _calculate_abs_neighbor_and_decide_validity(self, cell_coordinate, rel_n):
|
||||||
n = list(map(operator.add, rel_n, cell_coordinate))
|
n = list(map(operator.add, rel_n, cell_coordinate))
|
||||||
n_folded = self.__apply_edge_overflow(n)
|
n_folded = self.__apply_edge_overflow(n)
|
||||||
if n == n_folded or self.__edge_rule == EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS:
|
if n == n_folded or self.__edge_rule == EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS:
|
||||||
yield n_folded
|
yield n_folded
|
||||||
|
|
||||||
def __does_ignore_edge_cell_rule_apply(self, coordinate):
|
def _does_ignore_edge_cell_rule_apply(self, coordinate):
|
||||||
return self.__edge_rule == EdgeRule.IGNORE_EDGE_CELLS and self.__is_coordinate_on_an_edge(coordinate)
|
return self.__edge_rule == EdgeRule.IGNORE_EDGE_CELLS and self.__is_coordinate_on_an_edge(coordinate)
|
||||||
|
|
||||||
def __is_coordinate_on_an_edge(self, coordinate):
|
def __is_coordinate_on_an_edge(self, coordinate):
|
||||||
@ -70,13 +71,12 @@ class Neighborhood:
|
|||||||
|
|
||||||
|
|
||||||
class MooreNeighborhood(Neighborhood):
|
class MooreNeighborhood(Neighborhood):
|
||||||
""" Defines a Moore neighborhood:
|
""" Moore defined a neighborhood with a radius applied on a the non euclidean distance to other cells in the grid.
|
||||||
Moore defined a neighborhood with a radius applied on a the non euclidean distance to other cells in the grid.
|
|
||||||
Example:
|
Example:
|
||||||
Moor neighborhood in 2 dimensions with radius 1 and 2
|
2 dimensions
|
||||||
C = cell of interest
|
C = cell of interest
|
||||||
N = neighbour of cell
|
N = neighbor of cell
|
||||||
X = no neighbour of cell
|
X = no neighbor of cell
|
||||||
|
|
||||||
Radius 1 Radius 2
|
Radius 1 Radius 2
|
||||||
X X X X X N N N N N
|
X X X X X N N N N N
|
||||||
@ -86,20 +86,19 @@ class MooreNeighborhood(Neighborhood):
|
|||||||
X X X X X N N N N N
|
X X X X X N N N N N
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, range_=1, dimension=2):
|
def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, radius=1, dimension=2):
|
||||||
super().__init__(tuple(_rel_neighbor_generator(dimension, range_, lambda rel_n: True)),
|
super().__init__(tuple(_rel_neighbor_generator(dimension, radius, lambda rel_n: True)),
|
||||||
edge_rule)
|
edge_rule)
|
||||||
|
|
||||||
|
|
||||||
class VonNeumannNeighborhood(Neighborhood):
|
class VonNeumannNeighborhood(Neighborhood):
|
||||||
""" Defines a Von Neumann neighborhood:
|
""" Von Neumann defined a neighborhood with a radius applied to Manhatten distance
|
||||||
Von Neumann defined a neighborhood with a radius applied to Manhatten distance
|
|
||||||
(steps between cells without diagonal movement).
|
(steps between cells without diagonal movement).
|
||||||
Example:
|
Example:
|
||||||
Von Neumann neighborhood in 2 dimensions with radius 1 and 2
|
2 dimensions
|
||||||
C = cell of interest
|
C = cell of interest
|
||||||
N = neighbour of cell
|
N = neighbor of cell
|
||||||
X = no neighbour of cell
|
X = no neighbor of cell
|
||||||
|
|
||||||
Radius 1 Radius 2
|
Radius 1 Radius 2
|
||||||
X X X X X X X N X X
|
X X X X X X X N X X
|
||||||
@ -109,19 +108,135 @@ class VonNeumannNeighborhood(Neighborhood):
|
|||||||
X X X X X X X N X X
|
X X X X X X X N X X
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, range_=1, dimension=2):
|
def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, radius=1, dimension=2):
|
||||||
self.range_ = range_
|
self.radius = radius
|
||||||
super().__init__(tuple(_rel_neighbor_generator(dimension, range_, self.neighbor_rule)),
|
super().__init__(tuple(_rel_neighbor_generator(dimension, radius, self.neighbor_rule)),
|
||||||
edge_rule)
|
edge_rule)
|
||||||
|
|
||||||
def neighbor_rule(self, rel_n):
|
def neighbor_rule(self, rel_n):
|
||||||
cross_sum = 0
|
cross_sum = 0
|
||||||
for ci in rel_n:
|
for ci in rel_n:
|
||||||
cross_sum += abs(ci)
|
cross_sum += abs(ci)
|
||||||
return cross_sum <= self.range_
|
return cross_sum <= self.radius
|
||||||
|
|
||||||
|
|
||||||
|
class RadialNeighborhood(Neighborhood):
|
||||||
|
""" Neighborhood with a radius applied to euclidean distance + delta
|
||||||
|
|
||||||
|
Example:
|
||||||
|
2 dimensions
|
||||||
|
C = cell of interest
|
||||||
|
N = neighbor of cell
|
||||||
|
X = no neighbor of cell
|
||||||
|
|
||||||
|
Radius 2 Radius 3
|
||||||
|
X X X X X X X X X N N N X X
|
||||||
|
X X N N N X X X N N N N N X
|
||||||
|
X N N N N N X N N N N N N N
|
||||||
|
X N N C N N X N N N C N N N
|
||||||
|
X N N N N N X N N N N N N N
|
||||||
|
X X N N N X X X N N N N N X
|
||||||
|
X X X X X X X X X N N N X X
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, radius=1, delta_=.25, dimension=2):
|
||||||
|
self.radius = radius
|
||||||
|
self.delta = delta_
|
||||||
|
super().__init__(tuple(_rel_neighbor_generator(dimension, radius, self.neighbor_rule)),
|
||||||
|
edge_rule)
|
||||||
|
|
||||||
|
def neighbor_rule(self, rel_n):
|
||||||
|
cross_sum = 0
|
||||||
|
for ci in rel_n:
|
||||||
|
cross_sum += pow(ci, 2)
|
||||||
|
|
||||||
|
return math.sqrt(cross_sum) <= self.radius + self.delta
|
||||||
|
|
||||||
|
|
||||||
|
class HexagonalNeighborhood(Neighborhood):
|
||||||
|
""" Defines a Hexagonal neighborhood in a rectangular two dimensional grid:
|
||||||
|
|
||||||
|
Example:
|
||||||
|
Von Nexagonal neighborhood in 2 dimensions with radius 1 and 2
|
||||||
|
C = cell of interest
|
||||||
|
N = neighbor of cell
|
||||||
|
X = no neighbor of cell
|
||||||
|
|
||||||
|
Radius 1 Radius 2
|
||||||
|
X X X X X X N N N X
|
||||||
|
X N N X N N N N
|
||||||
|
X N C N X N N C N N
|
||||||
|
X N N X N N N N
|
||||||
|
X X X X X X N N N X
|
||||||
|
|
||||||
|
|
||||||
|
Rectangular representation: Radius 1
|
||||||
|
|
||||||
|
Row % 2 == 0 Row % 2 == 1
|
||||||
|
N N X X N N
|
||||||
|
N C N N C N
|
||||||
|
N N X X N N
|
||||||
|
|
||||||
|
Rectangular representation: Radius 2
|
||||||
|
Row % 2 == 0 Row % 2 == 1
|
||||||
|
X N N N X X N N N X
|
||||||
|
N N N N X X N N N N
|
||||||
|
N N C N N N N C N N
|
||||||
|
N N N N X X N N N N
|
||||||
|
X N N N X X N N N X
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, radius=1):
|
||||||
|
neighbor_lists = [[(0, 0)],
|
||||||
|
[(0, 0)]]
|
||||||
|
|
||||||
|
self.__calculate_hexagonal_neighborhood(neighbor_lists, radius)
|
||||||
|
|
||||||
|
super().__init__(neighbor_lists, edge_rule)
|
||||||
|
|
||||||
|
def __calculate_hexagonal_neighborhood(self, neighbor_lists, radius):
|
||||||
|
for r in range(1, radius + 1):
|
||||||
|
for i, n in enumerate(neighbor_lists):
|
||||||
|
n = _grow_neighbours(n)
|
||||||
|
n = self.__add_rectangular_neighbours(n, r, i % 2 == 1)
|
||||||
|
n = sorted(n, key=(lambda ne: [ne[1], ne[0]]))
|
||||||
|
n.remove((0, 0))
|
||||||
|
neighbor_lists[i] = n
|
||||||
|
|
||||||
|
def get_id_of_neighbor_from_relative_coordinate(self, rel_coordinate):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def _neighbors_generator(self, cell_coordinate):
|
||||||
|
if not self._does_ignore_edge_cell_rule_apply(cell_coordinate):
|
||||||
|
for rel_n in self._rel_neighbors[cell_coordinate[1] % 2]:
|
||||||
|
yield from self._calculate_abs_neighbor_and_decide_validity(cell_coordinate, rel_n)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def __add_rectangular_neighbours(neighbours, radius, is_odd):
|
||||||
|
new_neighbours = []
|
||||||
|
for x in range(0, radius + 1):
|
||||||
|
if is_odd:
|
||||||
|
x -= int(radius/2)
|
||||||
|
else:
|
||||||
|
x -= int((radius + 1) / 2)
|
||||||
|
|
||||||
|
for y in range(-radius, radius + 1):
|
||||||
|
new_neighbours.append((x, y))
|
||||||
|
new_neighbours.extend(neighbours)
|
||||||
|
return list(set(new_neighbours))
|
||||||
|
|
||||||
|
|
||||||
def _rel_neighbor_generator(dimension, range_, rule):
|
def _rel_neighbor_generator(dimension, range_, rule):
|
||||||
for c in itertools.product(range(-range_, range_ + 1), repeat=dimension):
|
for c in itertools.product(range(-range_, range_ + 1), repeat=dimension):
|
||||||
if rule(c) and c != (0, ) * dimension:
|
if rule(c) and c != (0, ) * dimension:
|
||||||
yield tuple(reversed(c))
|
yield tuple(reversed(c))
|
||||||
|
|
||||||
|
|
||||||
|
def _grow_neighbours(neighbours):
|
||||||
|
new_neighbours = neighbours[:]
|
||||||
|
for n in neighbours:
|
||||||
|
new_neighbours.append((n[0], n[1] - 1))
|
||||||
|
new_neighbours.append((n[0] - 1, n[1]))
|
||||||
|
new_neighbours.append((n[0] + 1, n[1]))
|
||||||
|
new_neighbours.append((n[0], n[1] + 1))
|
||||||
|
return list(set(new_neighbours))
|
||||||
|
@ -59,7 +59,7 @@ class TestNeighborhood(unittest.TestCase):
|
|||||||
self.assertTrue(self.check_neighbors(neighborhood, [n1]))
|
self.assertTrue(self.check_neighbors(neighborhood, [n1]))
|
||||||
|
|
||||||
def test_von_neumann_r2(self):
|
def test_von_neumann_r2(self):
|
||||||
neighborhood = csn.VonNeumannNeighborhood(csn.EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS, range_=2)
|
neighborhood = csn.VonNeumannNeighborhood(csn.EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS, radius=2)
|
||||||
n1 = [[2, 2], [[2, 0], [1, 1], [2, 1], [3, 1], [0, 2], [1, 2], [3, 2], [4, 2], [1, 3], [2, 3], [3, 3], [2, 4]]]
|
n1 = [[2, 2], [[2, 0], [1, 1], [2, 1], [3, 1], [0, 2], [1, 2], [3, 2], [4, 2], [1, 3], [2, 3], [3, 3], [2, 4]]]
|
||||||
self.assertTrue(self.check_neighbors(neighborhood, [n1], dimension=[5, 5]))
|
self.assertTrue(self.check_neighbors(neighborhood, [n1], dimension=[5, 5]))
|
||||||
|
|
||||||
@ -69,6 +69,29 @@ class TestNeighborhood(unittest.TestCase):
|
|||||||
n1 = [[1, 1, 1], [[1, 1, 0], [1, 0, 1], [0, 1, 1], [2, 1, 1], [1, 2, 1], [1, 1, 2]]]
|
n1 = [[1, 1, 1], [[1, 1, 0], [1, 0, 1], [0, 1, 1], [2, 1, 1], [1, 2, 1], [1, 1, 2]]]
|
||||||
self.assertTrue(self.check_neighbors(neighborhood, [n1], dimension=[3, 3, 3]))
|
self.assertTrue(self.check_neighbors(neighborhood, [n1], dimension=[3, 3, 3]))
|
||||||
|
|
||||||
|
def test_hexagonal(self):
|
||||||
|
neighborhood = csn.RadialNeighborhood(csn.EdgeRule.IGNORE_EDGE_CELLS, radius=2)
|
||||||
|
n1 = [[2, 2], [[1, 0], [2, 0], [3, 0],
|
||||||
|
[0, 1], [1, 1], [2, 1], [3, 1], [4, 1],
|
||||||
|
[0, 2], [1, 2], [3, 2], [4, 2],
|
||||||
|
[0, 3], [1, 3], [2, 3], [3, 3], [4, 3],
|
||||||
|
[1, 4], [2, 4], [3, 4]]]
|
||||||
|
self.assertTrue(self.check_neighbors(neighborhood, [n1], dimension=[5, 5]))
|
||||||
|
|
||||||
|
def test_hexagonal(self):
|
||||||
|
neighborhood = csn.HexagonalNeighborhood(csn.EdgeRule.IGNORE_EDGE_CELLS, radius=2)
|
||||||
|
n1 = [[2, 2], [[1, 0], [2, 0], [3, 0],
|
||||||
|
[0, 1], [1, 1], [2, 1], [3, 1],
|
||||||
|
[0, 2], [1, 2], [3, 2], [4, 2],
|
||||||
|
[0, 3], [1, 3], [2, 3], [3, 3],
|
||||||
|
[1, 4], [2, 4], [3, 4]]]
|
||||||
|
n2 = [[2, 3], [[1, 1], [2, 1], [3, 1],
|
||||||
|
[1, 2], [2, 2], [3, 2], [4, 2],
|
||||||
|
[0, 3], [1, 3], [3, 3], [4, 3],
|
||||||
|
[1, 4], [2, 4], [3, 4], [4, 4],
|
||||||
|
[1, 5], [2, 5], [3, 5]]]
|
||||||
|
self.assertTrue(self.check_neighbors(neighborhood, [n1, n2], dimension=[6, 6]))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
unittest.main()
|
unittest.main()
|
||||||
|
Loading…
Reference in New Issue
Block a user