added new neighborhoods

This commit is contained in:
Richard Feistenauer 2019-02-24 16:37:00 +01:00
parent 9964e3b483
commit 0f63e5bbe6
3 changed files with 163 additions and 24 deletions

View File

@ -1,4 +1,5 @@
from .neighborhood import Neighborhood, MooreNeighborhood, VonNeumannNeighborhood, EdgeRule from .neighborhood import Neighborhood, MooreNeighborhood, VonNeumannNeighborhood, \
EdgeRule, HexagonalNeighborhood, RadialNeighborhood
from .rule import Rule from .rule import Rule
from .factory import CAFactory from .factory import CAFactory
from .display import CAWindow from .display import CAWindow

View File

@ -17,6 +17,7 @@ limitations under the License.
import enum import enum
import operator import operator
import itertools import itertools
import math
class EdgeRule(enum.Enum): class EdgeRule(enum.Enum):
@ -43,23 +44,23 @@ class Neighborhood:
:return: list of absolute coordinates for the cells neighbors. :return: list of absolute coordinates for the cells neighbors.
""" """
self.__grid_dimensions = grid_dimensions self.__grid_dimensions = grid_dimensions
return list(self.__neighbors_generator(cell_coordinate)) return list(self._neighbors_generator(cell_coordinate))
def get_id_of_neighbor_from_relative_coordinate(self, rel_coordinate): def get_id_of_neighbor_from_relative_coordinate(self, rel_coordinate):
return self._rel_neighbors.index(rel_coordinate) return self._rel_neighbors.index(rel_coordinate)
def __neighbors_generator(self, cell_coordinate): def _neighbors_generator(self, cell_coordinate):
if not self.__does_ignore_edge_cell_rule_apply(cell_coordinate): if not self._does_ignore_edge_cell_rule_apply(cell_coordinate):
for rel_n in self._rel_neighbors: for rel_n in self._rel_neighbors:
yield from self.__calculate_abs_neighbor_and_decide_validity(cell_coordinate, rel_n) yield from self._calculate_abs_neighbor_and_decide_validity(cell_coordinate, rel_n)
def __calculate_abs_neighbor_and_decide_validity(self, cell_coordinate, rel_n): def _calculate_abs_neighbor_and_decide_validity(self, cell_coordinate, rel_n):
n = list(map(operator.add, rel_n, cell_coordinate)) n = list(map(operator.add, rel_n, cell_coordinate))
n_folded = self.__apply_edge_overflow(n) n_folded = self.__apply_edge_overflow(n)
if n == n_folded or self.__edge_rule == EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS: if n == n_folded or self.__edge_rule == EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS:
yield n_folded yield n_folded
def __does_ignore_edge_cell_rule_apply(self, coordinate): def _does_ignore_edge_cell_rule_apply(self, coordinate):
return self.__edge_rule == EdgeRule.IGNORE_EDGE_CELLS and self.__is_coordinate_on_an_edge(coordinate) return self.__edge_rule == EdgeRule.IGNORE_EDGE_CELLS and self.__is_coordinate_on_an_edge(coordinate)
def __is_coordinate_on_an_edge(self, coordinate): def __is_coordinate_on_an_edge(self, coordinate):
@ -70,13 +71,12 @@ class Neighborhood:
class MooreNeighborhood(Neighborhood): class MooreNeighborhood(Neighborhood):
""" Defines a Moore neighborhood: """ Moore defined a neighborhood with a radius applied on a the non euclidean distance to other cells in the grid.
Moore defined a neighborhood with a radius applied on a the non euclidean distance to other cells in the grid.
Example: Example:
Moor neighborhood in 2 dimensions with radius 1 and 2 2 dimensions
C = cell of interest C = cell of interest
N = neighbour of cell N = neighbor of cell
X = no neighbour of cell X = no neighbor of cell
Radius 1 Radius 2 Radius 1 Radius 2
X X X X X N N N N N X X X X X N N N N N
@ -86,20 +86,19 @@ class MooreNeighborhood(Neighborhood):
X X X X X N N N N N X X X X X N N N N N
""" """
def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, range_=1, dimension=2): def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, radius=1, dimension=2):
super().__init__(tuple(_rel_neighbor_generator(dimension, range_, lambda rel_n: True)), super().__init__(tuple(_rel_neighbor_generator(dimension, radius, lambda rel_n: True)),
edge_rule) edge_rule)
class VonNeumannNeighborhood(Neighborhood): class VonNeumannNeighborhood(Neighborhood):
""" Defines a Von Neumann neighborhood: """ Von Neumann defined a neighborhood with a radius applied to Manhatten distance
Von Neumann defined a neighborhood with a radius applied to Manhatten distance
(steps between cells without diagonal movement). (steps between cells without diagonal movement).
Example: Example:
Von Neumann neighborhood in 2 dimensions with radius 1 and 2 2 dimensions
C = cell of interest C = cell of interest
N = neighbour of cell N = neighbor of cell
X = no neighbour of cell X = no neighbor of cell
Radius 1 Radius 2 Radius 1 Radius 2
X X X X X X X N X X X X X X X X X N X X
@ -109,19 +108,135 @@ class VonNeumannNeighborhood(Neighborhood):
X X X X X X X N X X X X X X X X X N X X
""" """
def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, range_=1, dimension=2): def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, radius=1, dimension=2):
self.range_ = range_ self.radius = radius
super().__init__(tuple(_rel_neighbor_generator(dimension, range_, self.neighbor_rule)), super().__init__(tuple(_rel_neighbor_generator(dimension, radius, self.neighbor_rule)),
edge_rule) edge_rule)
def neighbor_rule(self, rel_n): def neighbor_rule(self, rel_n):
cross_sum = 0 cross_sum = 0
for ci in rel_n: for ci in rel_n:
cross_sum += abs(ci) cross_sum += abs(ci)
return cross_sum <= self.range_ return cross_sum <= self.radius
class RadialNeighborhood(Neighborhood):
""" Neighborhood with a radius applied to euclidean distance + delta
Example:
2 dimensions
C = cell of interest
N = neighbor of cell
X = no neighbor of cell
Radius 2 Radius 3
X X X X X X X X X N N N X X
X X N N N X X X N N N N N X
X N N N N N X N N N N N N N
X N N C N N X N N N C N N N
X N N N N N X N N N N N N N
X X N N N X X X N N N N N X
X X X X X X X X X N N N X X
"""
def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, radius=1, delta_=.25, dimension=2):
self.radius = radius
self.delta = delta_
super().__init__(tuple(_rel_neighbor_generator(dimension, radius, self.neighbor_rule)),
edge_rule)
def neighbor_rule(self, rel_n):
cross_sum = 0
for ci in rel_n:
cross_sum += pow(ci, 2)
return math.sqrt(cross_sum) <= self.radius + self.delta
class HexagonalNeighborhood(Neighborhood):
""" Defines a Hexagonal neighborhood in a rectangular two dimensional grid:
Example:
Von Nexagonal neighborhood in 2 dimensions with radius 1 and 2
C = cell of interest
N = neighbor of cell
X = no neighbor of cell
Radius 1 Radius 2
X X X X X X N N N X
X N N X N N N N
X N C N X N N C N N
X N N X N N N N
X X X X X X N N N X
Rectangular representation: Radius 1
Row % 2 == 0 Row % 2 == 1
N N X X N N
N C N N C N
N N X X N N
Rectangular representation: Radius 2
Row % 2 == 0 Row % 2 == 1
X N N N X X N N N X
N N N N X X N N N N
N N C N N N N C N N
N N N N X X N N N N
X N N N X X N N N X
"""
def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, radius=1):
neighbor_lists = [[(0, 0)],
[(0, 0)]]
self.__calculate_hexagonal_neighborhood(neighbor_lists, radius)
super().__init__(neighbor_lists, edge_rule)
def __calculate_hexagonal_neighborhood(self, neighbor_lists, radius):
for r in range(1, radius + 1):
for i, n in enumerate(neighbor_lists):
n = _grow_neighbours(n)
n = self.__add_rectangular_neighbours(n, r, i % 2 == 1)
n = sorted(n, key=(lambda ne: [ne[1], ne[0]]))
n.remove((0, 0))
neighbor_lists[i] = n
def get_id_of_neighbor_from_relative_coordinate(self, rel_coordinate):
raise NotImplementedError
def _neighbors_generator(self, cell_coordinate):
if not self._does_ignore_edge_cell_rule_apply(cell_coordinate):
for rel_n in self._rel_neighbors[cell_coordinate[1] % 2]:
yield from self._calculate_abs_neighbor_and_decide_validity(cell_coordinate, rel_n)
@staticmethod
def __add_rectangular_neighbours(neighbours, radius, is_odd):
new_neighbours = []
for x in range(0, radius + 1):
if is_odd:
x -= int(radius/2)
else:
x -= int((radius + 1) / 2)
for y in range(-radius, radius + 1):
new_neighbours.append((x, y))
new_neighbours.extend(neighbours)
return list(set(new_neighbours))
def _rel_neighbor_generator(dimension, range_, rule): def _rel_neighbor_generator(dimension, range_, rule):
for c in itertools.product(range(-range_, range_ + 1), repeat=dimension): for c in itertools.product(range(-range_, range_ + 1), repeat=dimension):
if rule(c) and c != (0, ) * dimension: if rule(c) and c != (0, ) * dimension:
yield tuple(reversed(c)) yield tuple(reversed(c))
def _grow_neighbours(neighbours):
new_neighbours = neighbours[:]
for n in neighbours:
new_neighbours.append((n[0], n[1] - 1))
new_neighbours.append((n[0] - 1, n[1]))
new_neighbours.append((n[0] + 1, n[1]))
new_neighbours.append((n[0], n[1] + 1))
return list(set(new_neighbours))

View File

@ -59,7 +59,7 @@ class TestNeighborhood(unittest.TestCase):
self.assertTrue(self.check_neighbors(neighborhood, [n1])) self.assertTrue(self.check_neighbors(neighborhood, [n1]))
def test_von_neumann_r2(self): def test_von_neumann_r2(self):
neighborhood = csn.VonNeumannNeighborhood(csn.EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS, range_=2) neighborhood = csn.VonNeumannNeighborhood(csn.EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS, radius=2)
n1 = [[2, 2], [[2, 0], [1, 1], [2, 1], [3, 1], [0, 2], [1, 2], [3, 2], [4, 2], [1, 3], [2, 3], [3, 3], [2, 4]]] n1 = [[2, 2], [[2, 0], [1, 1], [2, 1], [3, 1], [0, 2], [1, 2], [3, 2], [4, 2], [1, 3], [2, 3], [3, 3], [2, 4]]]
self.assertTrue(self.check_neighbors(neighborhood, [n1], dimension=[5, 5])) self.assertTrue(self.check_neighbors(neighborhood, [n1], dimension=[5, 5]))
@ -69,6 +69,29 @@ class TestNeighborhood(unittest.TestCase):
n1 = [[1, 1, 1], [[1, 1, 0], [1, 0, 1], [0, 1, 1], [2, 1, 1], [1, 2, 1], [1, 1, 2]]] n1 = [[1, 1, 1], [[1, 1, 0], [1, 0, 1], [0, 1, 1], [2, 1, 1], [1, 2, 1], [1, 1, 2]]]
self.assertTrue(self.check_neighbors(neighborhood, [n1], dimension=[3, 3, 3])) self.assertTrue(self.check_neighbors(neighborhood, [n1], dimension=[3, 3, 3]))
def test_hexagonal(self):
neighborhood = csn.RadialNeighborhood(csn.EdgeRule.IGNORE_EDGE_CELLS, radius=2)
n1 = [[2, 2], [[1, 0], [2, 0], [3, 0],
[0, 1], [1, 1], [2, 1], [3, 1], [4, 1],
[0, 2], [1, 2], [3, 2], [4, 2],
[0, 3], [1, 3], [2, 3], [3, 3], [4, 3],
[1, 4], [2, 4], [3, 4]]]
self.assertTrue(self.check_neighbors(neighborhood, [n1], dimension=[5, 5]))
def test_hexagonal(self):
neighborhood = csn.HexagonalNeighborhood(csn.EdgeRule.IGNORE_EDGE_CELLS, radius=2)
n1 = [[2, 2], [[1, 0], [2, 0], [3, 0],
[0, 1], [1, 1], [2, 1], [3, 1],
[0, 2], [1, 2], [3, 2], [4, 2],
[0, 3], [1, 3], [2, 3], [3, 3],
[1, 4], [2, 4], [3, 4]]]
n2 = [[2, 3], [[1, 1], [2, 1], [3, 1],
[1, 2], [2, 2], [3, 2], [4, 2],
[0, 3], [1, 3], [3, 3], [4, 3],
[1, 4], [2, 4], [3, 4], [4, 4],
[1, 5], [2, 5], [3, 5]]]
self.assertTrue(self.check_neighbors(neighborhood, [n1, n2], dimension=[6, 6]))
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()