From 1903bed60e3f9d063883c957ef5f7ed2d6e68e11 Mon Sep 17 00:00:00 2001 From: timofej Date: Wed, 23 Aug 2023 16:25:27 +0200 Subject: [PATCH] Add evaluations and examples --- evaluation/4Layer Bootstrap.py | 111 ++++++++++++++++++++++++++ evaluation/4Layer Res+EI.py | 60 ++++++++++++++ evaluation/4Layer Survey.py | 94 ++++++++++++++++++++++ evaluation/plot.py | 138 +++++++++++++++++++++++++++++++++ examples/Simulate1Layer.py | 4 +- examples/Simulate2Layers.py | 37 +++++++++ examples/Simulate4Layers.py | 32 ++++++++ 7 files changed, 474 insertions(+), 2 deletions(-) create mode 100644 evaluation/4Layer Bootstrap.py create mode 100644 evaluation/4Layer Res+EI.py create mode 100644 evaluation/4Layer Survey.py create mode 100644 evaluation/plot.py create mode 100644 examples/Simulate2Layers.py create mode 100644 examples/Simulate4Layers.py diff --git a/evaluation/4Layer Bootstrap.py b/evaluation/4Layer Bootstrap.py new file mode 100644 index 0000000..8562d81 --- /dev/null +++ b/evaluation/4Layer Bootstrap.py @@ -0,0 +1,111 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 21 14:59:22 2023 + +@author: astral +""" + +import json +import math as m +import numpy as np +from numpy.linalg import norm +from datetime import datetime +from random import sample as choose + +from plot import qtplot + +eps_space = list(np.linspace(0.01,0.2,20)) + +def resultant(sample): + phase_x = [m.cos(ind) for ind in sample] + phase_y = [m.sin(ind) for ind in sample] + + return (np.average(phase_x), np.average(phase_y)) + +def H2(x): + return -x*m.log2(x)-(1-x)*m.log2(1-x) + +extremes = 50000 +maxdt = 500 + +for dim in [7]: + for eps in eps_space: + path=f'/cloud/Public/_data/neuropercolation/4lay/steps=1000100/dim={dim:02}/' + + try: + with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f: + phase_diff = json.load(f) + except: + with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f: + activation = json.load(f)[100:] + + osc = list(zip(*activation)) + phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)]) + phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi + + with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f: + json.dump(list(phase_diff), f, indent=1) + + + all_res = norm(resultant(phase_diff)) + + try: + with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f: + ei = json.load(f) + except: + with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f: + channels = json.load(f)[100:] + + ei = [np.sum(cha)*(1-H2(eps)) for cha in channels] + + with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f: + json.dump(ei, f, indent=1) + + bot_ei = sorted(enumerate(ei[:-maxdt]), key = lambda x: x[1])[ extremes] + top_ei = sorted(enumerate(ei[:-maxdt]), key = lambda x: x[1])[-extremes] + + bot_ei_pool = [ei for ei in enumerate(ei[:-maxdt]) if ei[1] <= bot_ei[1]] + top_ei_pool = [ei for ei in enumerate(ei[:-maxdt]) if ei[1] >= top_ei[1]] + + bot_eis = choose(bot_ei_pool, extremes) + top_eis = choose(top_ei_pool, extremes) + + bot_ind = [enum[0] for enum in bot_eis] + top_ind = [enum[0] for enum in top_eis] + + bot_res = [] + top_res = [] + for dt in range(maxdt): + bot_pha = [phase_diff[i+dt] for i in bot_ind] + top_pha = [phase_diff[i+dt] for i in top_ind] + + bot_res.append( norm(resultant(bot_pha)) ) + top_res.append( norm(resultant(top_pha)) ) + if dt%100==99: + print(f'Done dt={dt}') + + + qtplot(f'Diachronic resultant for dim={dim} with 4 layers', + [np.array(range(maxdt))]*3, + [bot_res, top_res, [all_res]*maxdt], + ['Resultant ev of bottom 100 ei', 'Resultant ev of top 100 ei', 'Average Resultant'], + x_tag = 'dt', + y_tag = 'concentration', + export=True, + path=path, + filename=f'Diachronic Resultant for eps={round(eps,3)} dim={dim} extremes={extremes}.png', + close=True) + + print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') + + # qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers', + # [[0]+eps_space]*2, + # [max(av_ei)*diff_res, av_ei], + # ['Resultant', 'avEI'], + # export=True, + # path=path, + # filename=f'Resultant and EI for dim={dim}.png', + # close=True) + + \ No newline at end of file diff --git a/evaluation/4Layer Res+EI.py b/evaluation/4Layer Res+EI.py new file mode 100644 index 0000000..1f143f9 --- /dev/null +++ b/evaluation/4Layer Res+EI.py @@ -0,0 +1,60 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 21 14:59:22 2023 + +@author: astral +""" + +import json +import math as m +import numpy as np +from datetime import datetime + +from plot import qtplot + +eps_space = list(np.linspace(0.005,0.5,100)) + +def resultant(sample): + phase_x = [m.cos(ind) for ind in sample] + phase_y = [m.sin(ind) for ind in sample] + + return (np.average(phase_x), np.average(phase_y)) + +def H2(x): + return -x*m.log2(x)-(1-x)*m.log2(1-x) + +for dim in [7]: + diff_res = [0] + av_ei = [0] + for eps in eps_space: + path=f'/cloud/Public/_data/neuropercolation/4lay/steps=100000/dim={dim:02}/' + + with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f: + activation = json.load(f)[100:] + + osc = list(zip(*activation)) + phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)]) + phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi + + res = np.linalg.norm(resultant(phase_diff)) + diff_res.append(res) + + with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f: + channels = json.load(f)[100:] + + ei = [np.sum(cha)*(1-H2(eps)) for cha in channels] + av_ei.append(np.average(ei)) + + print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') + + qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers', + [[0]+eps_space]*2, + [diff_res, av_ei], + ['Resultant', 'avEI'], + export=True, + path=path, + filename=f'Resultant and EI for dim={dim}.png', + close=True) + + \ No newline at end of file diff --git a/evaluation/4Layer Survey.py b/evaluation/4Layer Survey.py new file mode 100644 index 0000000..5b1c8a8 --- /dev/null +++ b/evaluation/4Layer Survey.py @@ -0,0 +1,94 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 21 14:59:22 2023 + +@author: astral +""" + +import json +import math as m +import numpy as np +from numpy.linalg import norm +from datetime import datetime +from random import sample as choose + +from plot import qtplot + +eps_space = list(np.linspace(0.01,0.2,20)) + +def resultant(sample): + phase_x = [m.cos(ind) for ind in sample] + phase_y = [m.sin(ind) for ind in sample] + + return (np.average(phase_x), np.average(phase_y)) + +def H2(x): + return -x*m.log2(x)-(1-x)*m.log2(1-x) + +extremes = 50000 +maxdt = 500 + +for dim in [7]: + for eps in eps_space: + path=f'/cloud/Public/_data/neuropercolation/4lay/steps=1000100/dim={dim:02}/' + + try: + with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f: + phase_diff = json.load(f) + except: + with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f: + activation = json.load(f)[100:] + + osc = list(zip(*activation)) + phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)]) + phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi + + with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f: + json.dump(list(phase_diff), f, indent=1) + + + all_res = norm(resultant(phase_diff)) + + try: + with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f: + ei = json.load(f) + except: + with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f: + channels = json.load(f)[100:] + + ei = [np.sum(cha)*(1-H2(eps)) for cha in channels] + + with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f: + json.dump(ei, f, indent=1) + + pha_divs = 8 + pha_sort = [0]*pha_divs + + pha_sort = [[pha for pha in list(enumerate(phase_diff))[:-maxdt] if i*m.pi/pha_divs <= abs(pha[1]) <= (i+1)*m.pi/pha_divs] for i in range(pha_divs)] + dia_ei = [[np.average([ei[pha[0]+dt] for pha in pha_div]) for dt in range(maxdt)] for pha_div in pha_sort] + + qtplot(f'Diachronic EI for dim={dim} with 4 layers', + [list(range(maxdt))]*pha_divs, + dia_ei, + [f'EI evolution for initial phase in [{div}pi,{div+1}pi]' for div in range(pha_divs)], + x_tag = 'dt', + y_tag = 'average EI', + colors = 'rgb', + export=True, + path=path, + filename=f'Diachronic EI for eps={round(eps,3)} dim={dim} pha_divs={pha_divs}.png', + close=True) + + print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') + + # qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers', + # [[0]+eps_space]*2, + # [max(av_ei)*diff_res, av_ei], + # ['Resultant', 'avEI'], + # export=True, + # path=path, + # filename=f'Resultant and EI for dim={dim}.png', + # close=True) + + \ No newline at end of file diff --git a/evaluation/plot.py b/evaluation/plot.py new file mode 100644 index 0000000..ccbb090 --- /dev/null +++ b/evaluation/plot.py @@ -0,0 +1,138 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Mon Aug 21 16:12:53 2023 + +@author: astral +""" + +import sys +import os + +import pyqtgraph as qt +import pyqtgraph.exporters +from PyQt5.QtGui import QFont + + +import math as m +import numpy as np + +def __get_color(factor, gamma=0.8): + frequency=380+factor*(750-380) + + lightfrequency = 0.4*(3*np.log10(frequency/2)-2)/4 + + wavelength = 300/lightfrequency + + '''steps of 10Hz: 22 means 220Hz''' + + '''This converts a given wavelength of light to an + approximate RGB color value. The wavelength must be given + in values between 0 and 1 for 0=380nm through 1=750nm + (789 THz through 400 THz). + + Based on code by Dan Bruton + http://www.physics.sfasu.edu/astro/color/spectra.html + ''' + + wavelength = float(wavelength) + if wavelength >= 380 and wavelength <= 440: + attenuation = 0.3 + 0.7 * (wavelength - 380) / (440 - 380) + R = ((-(wavelength - 440) / (440 - 380)) * attenuation) ** gamma + G = 0.0 + B = (1.0 * attenuation) ** gamma + elif wavelength >= 440 and wavelength <= 490: + R = 0.0 + G = ((wavelength - 440) / (490 - 440)) ** gamma + B = 1.0 + elif wavelength >= 490 and wavelength <= 510: + R = 0.0 + G = 1.0 + B = (-(wavelength - 510) / (510 - 490)) ** gamma + elif wavelength >= 510 and wavelength <= 580: + R = ((wavelength - 510) / (580 - 510)) ** gamma + G = 1.0 + B = 0.0 + elif wavelength >= 580 and wavelength <= 645: + R = 1.0 + G = (-(wavelength - 645) / (645 - 580)) ** gamma + B = 0.0 + elif wavelength >= 645 and wavelength <= 750: + attenuation = 0.3 + 0.7 * (750 - wavelength) / (750 - 645) + R = (1.0 * attenuation) ** gamma + G = 0.0 + B = 0.0 + else: + R = 0.0 + G = 0.0 + B = 0.0 + R *= 255 + G *= 255 + B *= 255 + return (int(R), int(G), int(B)) + +def plot_execute(): + if sys.flags.interactive != 1 or not hasattr(qt.QtCore, 'PYQT_VERSION'): + qt.QtGui.QApplication.exec_() + +def qtplot(titletext, spaces, vals, names, x_tag=f'noise level {chr(949)}', y_tag=None, colors=None, export=False, path=None, filename=None, lw=4, close=False): + linewidth = lw + + #app = qt.mkQApp() + + ph = qt.plot() + ph.showGrid(x=True,y=True) + ph.setXRange(np.min(spaces), np.max(spaces)) + # ph.setYRange(0.0, 6) + + #ph.setTitle(title='Susceptibility density evolution for different automaton sizes', offset=(1000,500))#.format(dim)) + ph.setLabel('left', y_tag) + ph.setLabel('bottom', x_tag) + #ph.setXRange(0, 0.15) + + ph.addLegend(offset=(400, 30)) + + + #s = ph.plot(np.linspace(0.01,0.32,32), eps_max_freq0, title=sp_Title, pen='w') + #s = ph.plot(np.linspace(0.01,0.32,32), eps_max_freq1, title=sp_Title, pen='w') + + + if colors=='rgb': + colors=[__get_color(fac/(len(vals)-1)) for fac in range(len(vals))] + elif colors is None: + colors=['r', 'g', 'b', 'y', 'c', 'm', 'w', (100,100,0), (0,100,100), (100,0,100)] + + + for i in range(len(vals)): + s = ph.plot(spaces[i], vals[i], + name=names[i], pen=qt.mkPen(colors[i], width=linewidth)) + + title_item = qt.TextItem(text=titletext, anchor=(0.5, 7), color='grey') + ph.addItem(title_item) + title_item.setPos(ph.getViewBox().viewRect().center()) + font = QFont() + font.setPointSize(14) # Adjust the font size as needed + title_item.setFont(font) + + if export: + if not os.path.exists(path): + os.makedirs(path) + + exporter = qt.exporters.ImageExporter(ph.plotItem) + + # set export parameters if needed + exporter.parameters()['width'] = 1200 # (note this also affects height parameter) + + # save to file + exporter.export(path+filename) + + def handleAppExit(): + # Add any cleanup tasks here + print("closing") + + if close: + ph.close() + + # app.aboutToQuit.connect(handleAppExit) + # app.exec_() + \ No newline at end of file diff --git a/examples/Simulate1Layer.py b/examples/Simulate1Layer.py index 67adc50..535dc43 100644 --- a/examples/Simulate1Layer.py +++ b/examples/Simulate1Layer.py @@ -5,7 +5,7 @@ Created on Fri Aug 18 19:05:04 2023 @author: astral """ - +from datetime import datetime import numpy as np from neuropercolation import Simulate1Layer @@ -23,4 +23,4 @@ for dim in [49,100]: ).run(evolutions_per_second=30, last_evolution_step=100000, save_states=False) - print(f'Done eps={eps:.3f} at dim={dim}') \ No newline at end of file + print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') \ No newline at end of file diff --git a/examples/Simulate2Layers.py b/examples/Simulate2Layers.py new file mode 100644 index 0000000..7f71aee --- /dev/null +++ b/examples/Simulate2Layers.py @@ -0,0 +1,37 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 18 19:05:04 2023 + +@author: astral +""" + +from datetime import datetime +import numpy as np +from neuropercolation import Simulate2Layers, Simulate4Layers + +eps_space = np.linspace(0.005,0.5,100) +#eps_space = np.linspace(0.135,0.15,4) + +for dim in [8]: + for eps in eps_space: + eps = round(eps,3) + sim = Simulate4Layers(dim, + eps, + steps=100100, + draw=None, + save='all', + path=f'/cloud/Public/_data/neuropercolation/4lay/steps=100100/dim={dim:02}/', + ) + print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') + + for eps in eps_space: + eps = round(eps,3) + sim = Simulate2Layers(dim, + eps, + steps=100100, + draw=None, + save='all', + path=f'/cloud/Public/_data/neuropercolation/2lay/steps=100100/dim={dim:02}/', + ) + print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') \ No newline at end of file diff --git a/examples/Simulate4Layers.py b/examples/Simulate4Layers.py new file mode 100644 index 0000000..6d7db01 --- /dev/null +++ b/examples/Simulate4Layers.py @@ -0,0 +1,32 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 18 19:05:04 2023 + +@author: astral +""" + +from datetime import datetime +import numpy as np +from neuropercolation import Simulate4Layers + +eps_space = np.linspace(0.005,0.5,100) +#eps_space = np.linspace(0.135,0.15,4) + +stp = 1000100 + +for batch in range(1,5): + for dim in [7]: + for eps in eps_space[1:41:2]: + eps = round(eps,3) + cons = [(n,n) for n in range(dim)]+[(n,(n+3)%7) for n in range(dim)] + sim = Simulate4Layers(dim, + eps, + coupling=cons, + steps=stp, + draw=None, + res=2, + save='simple', + path=f'/cloud/Public/_data/neuropercolation/4lay/cons={len(cons)}_steps={stp}/dim={dim:02}/batch={batch}/', + ) + print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') \ No newline at end of file