Substitute count_alive_neighbors function by sum
This commit is contained in:
parent
34794ffb7a
commit
7c488d2892
@ -18,4 +18,4 @@ limitations under the License.
|
||||
from .neighborhood import Neighborhood, MooreNeighborhood, RadialNeighborhood, VonNeumannNeighborhood, \
|
||||
HexagonalNeighborhood, EdgeRule
|
||||
from .automaton import Neuropercolation, NeuropercolationCoupled
|
||||
from .display import Simulate2Layers
|
||||
from .display import Simulate2Layers, Simulate4Layers
|
||||
|
@ -123,7 +123,7 @@ class Neuropercolation(CellularAutomatonCreator, abc.ABC):
|
||||
for coord, old, new in zip(this_state.keys(), this_state.values(), next_state.values()):
|
||||
coord_c = tuple([*coord[:2],int(1-coord[2])])
|
||||
old_c = this_state[coord_c]
|
||||
new_state = evolution_rule(old.state.copy(), old_c.state.copy(), [n.state for n in old.neighbors], coord[2], coord_c[2]) #inverse the inhibitory layer's action
|
||||
new_state = evolution_rule(old.state.copy(), old_c.state.copy(), [n.state[0] for n in old.neighbors], coord[2], coord_c[2]) #inverse the inhibitory layer's action
|
||||
|
||||
evolve_cell(old, new, new_state)
|
||||
|
||||
@ -136,9 +136,9 @@ class Neuropercolation(CellularAutomatonCreator, abc.ABC):
|
||||
def evolve_rule(self, last_cell_state, link_last_state, neighbors_last_states, cell_lay, link_cell_lay):
|
||||
new_cell_state = last_cell_state
|
||||
if link_cell_lay==0:
|
||||
alive_neighbours = self.__count_alive_neighbours(neighbors_last_states)+link_last_state[0] # adjust for excitatory link cells
|
||||
alive_neighbours = sum(neighbors_last_states)+link_last_state[0] # adjust for excitatory link cells
|
||||
else:
|
||||
alive_neighbours = self.__count_alive_neighbours(neighbors_last_states)+(1-link_last_state[0]) # adjust for inhibitory link cells
|
||||
alive_neighbours = sum(neighbors_last_states)+(1-link_last_state[0]) # adjust for inhibitory link cells
|
||||
|
||||
CASE = (random.random()>=self.epsilon)
|
||||
if alive_neighbours > 2:
|
||||
@ -153,14 +153,6 @@ class Neuropercolation(CellularAutomatonCreator, abc.ABC):
|
||||
new_cell_state = ALIVE
|
||||
return new_cell_state
|
||||
|
||||
@staticmethod
|
||||
def __count_alive_neighbours(neighbours):
|
||||
alive_neighbors = []
|
||||
for n in neighbours:
|
||||
if n == ALIVE:
|
||||
alive_neighbors.append(1)
|
||||
return len(alive_neighbors)
|
||||
|
||||
class NeuropercolationCoupled(CellularAutomatonCreator, abc.ABC):
|
||||
|
||||
def __init__(self, dim, eps, coupling=[], *args, **kwargs):
|
||||
@ -206,11 +198,11 @@ class NeuropercolationCoupled(CellularAutomatonCreator, abc.ABC):
|
||||
if coord[:2] in self.coupling:
|
||||
coord_c = tuple([*coord[:2],coord[2],int(1-coord[3])])
|
||||
old_c = this_state[coord_c]
|
||||
new_state = evolution_rule(old.state.copy(), old_c.state.copy(), [n.state for n in old.neighbors], 0)
|
||||
new_state = evolution_rule(old.state.copy(), old_c.state.copy(), [n.state[0] for n in old.neighbors], 0)
|
||||
else:
|
||||
coord_c = tuple([*coord[:2],int(1-coord[2]),coord[3]])
|
||||
old_c = this_state[coord_c]
|
||||
new_state = evolution_rule(old.state.copy(), old_c.state.copy(), [n.state for n in old.neighbors], coord_c[2]) #inverse the inhibitory layer's action
|
||||
new_state = evolution_rule(old.state.copy(), old_c.state.copy(), [n.state[0] for n in old.neighbors], coord_c[2]) #inverse the inhibitory layer's action
|
||||
|
||||
evolve_cell(old, new, new_state)
|
||||
|
||||
@ -223,9 +215,9 @@ class NeuropercolationCoupled(CellularAutomatonCreator, abc.ABC):
|
||||
def evolve_rule(self, last_cell_state, link_last_state, neighbors_last_states, other_layer):
|
||||
new_cell_state = last_cell_state
|
||||
if other_layer==0:
|
||||
alive_neighbours = self.__count_alive_neighbours(neighbors_last_states)+link_last_state[0] # adjust for excitatory link cells
|
||||
alive_neighbours = sum(neighbors_last_states)+link_last_state[0] # adjust for excitatory link cells
|
||||
else:
|
||||
alive_neighbours = self.__count_alive_neighbours(neighbors_last_states)+(1-link_last_state[0]) # adjust for inhibitory link cells
|
||||
alive_neighbours = sum(neighbors_last_states)+(1-link_last_state[0]) # adjust for inhibitory link cells
|
||||
|
||||
CASE = (random.random()>=self.epsilon)
|
||||
if alive_neighbours > 2:
|
||||
@ -238,4 +230,4 @@ class NeuropercolationCoupled(CellularAutomatonCreator, abc.ABC):
|
||||
new_cell_state = DEAD
|
||||
else:
|
||||
new_cell_state = ALIVE
|
||||
return new_cell_state
|
||||
return new_cell_state
|
||||
|
@ -113,6 +113,7 @@ class Simulate2Layers:
|
||||
self.__draw_engine._pygame.quit()
|
||||
except:
|
||||
print('Failed to quit pygame')
|
||||
|
||||
def _sleep_to_keep_rate(self, time_taken, evolutions_per_second): # pragma: no cover
|
||||
if evolutions_per_second > 0:
|
||||
rest_time = 1.0 / evolutions_per_second - time_taken
|
||||
@ -173,3 +174,116 @@ class Simulate2Layers:
|
||||
|
||||
def _is_not_user_terminated(self):
|
||||
return self.__draw_engine.is_active()
|
||||
|
||||
class Simulate4Layers:
|
||||
def __init__(self,
|
||||
cellular_automaton: NeuropercolationCoupled,
|
||||
window_size=(1000, 800),
|
||||
stretch_cells=False,
|
||||
draw_engine=None,
|
||||
state_to_color_cb=None,
|
||||
*args, **kwargs):
|
||||
"""
|
||||
Creates a window to render a 2D CellularAutomaton.
|
||||
:param cellular_automaton: The automaton to display and evolve
|
||||
:param window_size: The Window size (default: 1000 x 800)
|
||||
:param stretch_cells: Stretches cells to fit into window size. (default: false)
|
||||
Activating it can result in black lines throughout the automaton.
|
||||
:param draw_engine: The draw_engine (default: pygame)
|
||||
:param state_to_color_cb: A callback to define the draw color of CA states (default: red for states != 0)
|
||||
"""
|
||||
super().__init__(*args, **kwargs)
|
||||
self._cellular_automaton = cellular_automaton
|
||||
self.__rect = _Rect(left=0, top=30, width=window_size[0], height=window_size[1])
|
||||
self.__calculate_cell_display_size(stretch_cells)
|
||||
self.__draw_engine = PygameEngine(window_size, self.__rect.top) if draw_engine is None else draw_engine
|
||||
self.__state_to_color = self._get_cell_color if state_to_color_cb is None else state_to_color_cb
|
||||
|
||||
def run(self,
|
||||
evolutions_per_second=0,
|
||||
evolutions_per_draw=1,
|
||||
last_evolution_step=0,):
|
||||
"""
|
||||
Evolves and draws the CellularAutomaton
|
||||
:param evolutions_per_second: 0 = as fast as possible | > 0 to slow down the CellularAutomaton
|
||||
:param evolutions_per_draw: Amount of evolutions done before screen gets redrawn.
|
||||
:param last_evolution_step: 0 = infinite | > 0 evolution step at which this method will stop
|
||||
Warning: is blocking until finished
|
||||
"""
|
||||
with contextlib.suppress(KeyboardInterrupt):
|
||||
while self._is_not_user_terminated() and self._not_at_the_end(last_evolution_step):
|
||||
time_ca_start = time.time()
|
||||
self._cellular_automaton.evolve(evolutions_per_draw)
|
||||
time_ca_end = time.time()
|
||||
self._redraw_dirty_cells()
|
||||
time_ds_end = time.time()
|
||||
self.print_process_info(evolve_duration=(time_ca_end - time_ca_start),
|
||||
draw_duration=(time_ds_end - time_ca_end),
|
||||
evolution_step=self._cellular_automaton.evolution_step)
|
||||
self._sleep_to_keep_rate(time.time() - time_ca_start, evolutions_per_second)
|
||||
try:
|
||||
self.__draw_engine._pygame.quit()
|
||||
except:
|
||||
print('Failed to quit pygame')
|
||||
|
||||
def _sleep_to_keep_rate(self, time_taken, evolutions_per_second): # pragma: no cover
|
||||
if evolutions_per_second > 0:
|
||||
rest_time = 1.0 / evolutions_per_second - time_taken
|
||||
if rest_time > 0:
|
||||
time.sleep(rest_time)
|
||||
|
||||
def _not_at_the_end(self, last_evolution_step):
|
||||
return (self._cellular_automaton.evolution_step < last_evolution_step or last_evolution_step <= 0)
|
||||
|
||||
def __calculate_cell_display_size(self, stretch_cells): # pragma: no cover
|
||||
grid_dimension = self._cellular_automaton.dimension
|
||||
if stretch_cells:
|
||||
self.__cell_size = [(self.__rect.width) / (grid_dimension[0]*2),
|
||||
(self.__rect.height) / (grid_dimension[1]*2)]
|
||||
else:
|
||||
self.__cell_size = [int((self.__rect.width) / (grid_dimension[0]*2)),
|
||||
int((self.__rect.height) / (grid_dimension[1]*2))]
|
||||
|
||||
def _redraw_dirty_cells(self):
|
||||
self.__draw_engine.update_rectangles(list(self.__redraw_dirty_cells()))
|
||||
|
||||
def __redraw_dirty_cells(self):
|
||||
for coordinate, cell in self._cellular_automaton.cells.items():
|
||||
if cell.is_dirty:
|
||||
yield self.__redraw_cell(cell, coordinate)
|
||||
|
||||
def __redraw_cell(self, cell, coordinate):
|
||||
cell_color = self.__state_to_color(cell.state)
|
||||
if coordinate[2]==1:
|
||||
cell_color = cell_color[::-1]
|
||||
cell_pos = self.__calculate_cell_position_in_the_grid(coordinate)
|
||||
surface_pos = self.__calculate_cell_position_on_screen(cell_pos)
|
||||
cell.is_dirty = False
|
||||
return self.__draw_cell_surface(surface_pos, cell_color)
|
||||
|
||||
def _get_cell_color(self, current_state: Sequence) -> Sequence:
|
||||
""" Returns the color of the cell depending on its current state """
|
||||
return 255 if current_state[0] else 0, 0, 0
|
||||
|
||||
def __calculate_cell_position_in_the_grid(self, coord):
|
||||
return list(map(operator.add,
|
||||
map(operator.mul,
|
||||
self.__cell_size,
|
||||
coord[:2]),
|
||||
[(self.__rect.width/2)*(coord[3]),
|
||||
(self.__rect.height/2)*(coord[2])]))
|
||||
|
||||
def __calculate_cell_position_on_screen(self, cell_pos):
|
||||
return [self.__rect.left + cell_pos[0], self.__rect.top + cell_pos[1]]
|
||||
|
||||
def __draw_cell_surface(self, surface_pos, cell_color):
|
||||
return self.__draw_engine.fill_surface_with_color((surface_pos, self.__cell_size), cell_color)
|
||||
|
||||
def print_process_info(self, evolve_duration, draw_duration, evolution_step):
|
||||
self.__draw_engine.fill_surface_with_color(((0, 0), (self.__rect.width, 30)))
|
||||
self.__draw_engine.write_text((10, 5), "CA: " + "{0:.4f}".format(evolve_duration) + "s")
|
||||
self.__draw_engine.write_text((310, 5), "Display: " + "{0:.4f}".format(draw_duration) + "s")
|
||||
self.__draw_engine.write_text((660, 5), "Step: " + str(evolution_step))
|
||||
|
||||
def _is_not_user_terminated(self):
|
||||
return self.__draw_engine.is_active()
|
||||
|
Loading…
Reference in New Issue
Block a user