Add Simulate1Layer

This commit is contained in:
timofej 2023-08-17 23:45:53 +02:00
parent 47d22e59ac
commit 7d5f579a34
3 changed files with 195 additions and 4 deletions

View File

@ -17,5 +17,5 @@ limitations under the License.
from .neighborhood import Neighborhood, MooreNeighborhood, RadialNeighborhood, VonNeumannNeighborhood, \
HexagonalNeighborhood, EdgeRule
from .automaton import Neuropercolation, NeuropercolationCoupled
from .display import Simulate2Layers, Simulate4Layers
from .automaton import Neurolattice, Neuropercolation, NeuropercolationCoupled
from .display import Simulate1Layer, Simulate2Layers, Simulate4Layers

View File

@ -79,6 +79,74 @@ class CellularAutomatonCreator(abc.ABC):
raise NotImplementedError
class Neurolattice(CellularAutomatonCreator, abc.ABC):
""" Cellular automaton with the evolution rules of conways game of life """
def __init__(self, dim, eps, *args, **kwargs):
super().__init__(dimension=[dim, dim],
neighborhood=VonNeumannNeighborhood(EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS))
self._evolution_step = 0
self.epsilon = eps
def init_cell_state(self, coord): # pylint: disable=no-self-use
return DEAD
def get_cells(self):
return self._current_state
def set_cells(self, cells):
""" Sets the cell states both as current and next states """
for (coordinate, c_cell), n_cell in zip(self._current_state.items(), self._next_state.values()):
new_cell_state = cells[coordinate].state
c_cell.state = new_cell_state
n_cell.state = new_cell_state
cells = property(get_cells, set_cells)
def get_evolution_step(self):
return self._evolution_step
evolution_step = property(get_evolution_step)
def evolve(self, times=1):
""" Evolve all cells x times.
:param times: The number of evolution steps processed with one call of this method.
"""
for _ in itertools.repeat(None, times):
self.__evolve_cells(self._current_state, self._next_state)
self._current_state, self._next_state = self._next_state, self._current_state
self._evolution_step += 1
def __evolve_cells(self, this_state, next_state):
evolve_cell = self.__evolve_cell
evolution_rule = self.evolve_rule
for coord, old, new in zip(this_state.keys(), this_state.values(), next_state.values()):
new_state = evolution_rule(old.state.copy(), [n.state[0] for n in old.neighbors])
evolve_cell(old, new, new_state)
def __evolve_cell(self, old, cell, new_state):
changed = new_state != old.state
cell.state = new_state
cell.is_dirty |= changed
old.is_dirty |= changed
def evolve_rule(self, last_cell_state, neighbors_last_states):
new_cell_state = last_cell_state
alive_neighbours = sum(neighbors_last_states)+last_cell_state[0]
CASE = (random.random()>=self.epsilon)
if alive_neighbours > 2:
if CASE:
new_cell_state = ALIVE
else:
new_cell_state = DEAD
else:
if CASE:
new_cell_state = DEAD
else:
new_cell_state = ALIVE
return new_cell_state
class Neuropercolation(CellularAutomatonCreator, abc.ABC):
""" Cellular automaton with the evolution rules of conways game of life """

View File

@ -18,14 +18,13 @@ limitations under the License.
import os
import json
import pbjson
import time
import operator
import collections
import contextlib
from typing import Sequence
from . import Neuropercolation, NeuropercolationCoupled
from . import Neurolattice, Neuropercolation, NeuropercolationCoupled
_Rect = collections.namedtuple(typename="Rect",
field_names=["left", "top", "width", "height"])
@ -66,6 +65,130 @@ class PygameEngine:
return True
class Simulate1Layer:
def __init__(self,
dim,
eps,
res=4,
draw='pygame',
path='/cloud/Public/_data/neuropercolation/test/',
state_to_color_cb=None,
*args, **kwargs):
"""
Creates a window to render a 2D CellularAutomaton.
:param cellular_automaton: The automaton to display and evolve
:param window_size: The Window size (default: 1000 x 800)
:param stretch_cells: Stretches cells to fit into window size. (default: false)
Activating it can result in black lines throughout the automaton.
:param draw_engine: The draw_engine (default: pygame)
:param state_to_color_cb: A callback to define the draw color of CA states (default: red for states != 0)
"""
super().__init__(*args, **kwargs)
self._cellular_automaton = Neurolattice(dim,eps)
self.__cell_size = [res,res]
self.__dimension = dim
self.__epsilon = eps
self.__gridside = dim*res
self.__rect = _Rect(left=0, top=30, width=dim*res, height=dim*res)
self.__draw_engine = PygameEngine((self.__rect.width,self.__rect.height+self.__rect.top)) if draw == 'pygame' else draw
self.__state_to_color = self._get_cell_color if state_to_color_cb is None else state_to_color_cb
self.__path = path
self.__state_list = []
def run(self,
evolutions_per_second=0,
evolutions_per_draw=1,
last_evolution_step=0,):
"""
Evolves and draws the CellularAutomaton
:param evolutions_per_second: 0 = as fast as possible | > 0 to slow down the CellularAutomaton
:param evolutions_per_draw: Amount of evolutions done before screen gets redrawn.
:param last_evolution_step: 0 = infinite | > 0 evolution step at which this method will stop
Warning: is blocking until finished
"""
self._append_state()
with contextlib.suppress(KeyboardInterrupt):
while self._is_not_user_terminated() and self._not_at_the_end(last_evolution_step):
time_ca_start = time.time()
self._cellular_automaton.evolve(evolutions_per_draw)
self._append_state()
time_ca_end = time.time()
self._redraw_dirty_cells()
time_ds_end = time.time()
self.print_process_info(evolve_duration=(time_ca_end - time_ca_start),
draw_duration=(time_ds_end - time_ca_end),
evolution_step=self._cellular_automaton.evolution_step,
runlendig=len(str(last_evolution_step)))
self._sleep_to_keep_rate(time.time() - time_ca_start, evolutions_per_second)
try:
self.__draw_engine._pygame.quit()
except:
print('Failed to quit pygame')
self._save_state_list()
def _append_state(self):
automaton_state = [[0 for n in range(self.__dimension)] for m in range(self.__dimension)]
for coord, cell in self._cellular_automaton._current_state.items():
x,y = coord
automaton_state[y][x] = int(cell.state[0])
automaton_state = [''.join(str(cells) for cells in rows) for rows in automaton_state]
automaton_state = '.'.join(str(rows) for rows in automaton_state)
self.__state_list.append(automaton_state)
def _save_state_list(self):
if not os.path.exists(self.__path):
os.makedirs(self.__path)
with open(self.__path+f"eps={round(self.__epsilon,3):.3f}_states.txt", 'w', encoding='utf-8') as f:
json.dump(self.__state_list, f, indent=1)
def _sleep_to_keep_rate(self, time_taken, evolutions_per_second): # pragma: no cover
if evolutions_per_second > 0:
rest_time = 1.0 / evolutions_per_second - time_taken
if rest_time > 0:
time.sleep(rest_time)
def _not_at_the_end(self, last_evolution_step):
return (self._cellular_automaton.evolution_step < last_evolution_step or last_evolution_step <= 0)
def _redraw_dirty_cells(self):
self.__draw_engine.update_rectangles(list(self.__redraw_dirty_cells()))
def __redraw_dirty_cells(self):
for coordinate, cell in self._cellular_automaton.cells.items():
if cell.is_dirty:
yield self.__redraw_cell(cell, coordinate)
def __redraw_cell(self, cell, coordinate):
cell_color = self.__state_to_color(cell.state)
cell_pos = self.__calculate_cell_position_in_the_grid(coordinate)
surface_pos = self.__calculate_cell_position_on_screen(cell_pos)
cell.is_dirty = False
return self.__draw_cell_surface(surface_pos, cell_color)
def _get_cell_color(self, current_state: Sequence) -> Sequence:
""" Returns the color of the cell depending on its current state """
return 255 if current_state[0] else 0, 0, 0
def __calculate_cell_position_in_the_grid(self, coord):
return list(map(operator.mul,
self.__cell_size,
coord[:2]))
def __calculate_cell_position_on_screen(self, cell_pos):
return [self.__rect.left + cell_pos[0], self.__rect.top + cell_pos[1]]
def __draw_cell_surface(self, surface_pos, cell_color):
return self.__draw_engine.fill_surface_with_color((surface_pos, self.__cell_size), cell_color)
def print_process_info(self, evolve_duration, draw_duration, evolution_step, runlendig):
self.__draw_engine.fill_surface_with_color(((0, 0), (self.__rect.width, 30)))
self.__draw_engine.write_text((0, 5), f'Step: {evolution_step:>{runlendig}} FPS: {int(1/(evolve_duration+draw_duration))}')
def _is_not_user_terminated(self):
return self.__draw_engine.is_active()
class Simulate2Layers:
def __init__(self,
dim,