#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 27 04:39:54 2023 @author: timofej """ import os import json import math as m import numpy as np from numpy.linalg import norm from datetime import datetime from random import sample as choose from random import random from plot import qtplot from neuropercolation import Simulate4Layers eps_space = list(np.linspace(0.01,0.2,20)) def new_folder(path): if not os.path.exists(path): os.makedirs(path) phase = np.vectorize(lambda x,y: (m.atan2(y,x)+m.pi)%(2*m.pi)-m.pi) diff = np.vectorize(lambda x,y: (y-x+m.pi)%(2*m.pi)-m.pi) H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x) def neighbor(digit0, digit1, lenght): layer = int(lenght) dim = int(np.sqrt(layer)) digit0, digit1 = np.array([digit0%dim, digit0//dim]), np.array([digit1%dim, digit1//dim]) #print(digit0,digit1) coord_dif = list(map(abs,digit1 - digit0)) layer_nbor = 0 in coord_dif and len(set([1,dim-1]).intersection(set(coord_dif))) != 0 #print(coord_dif, set([1,dim-1]).intersection(set(coord_dif))) if layer_nbor: return True else: return False def kcomb(zp,zm): if zp>2: val=1 elif zm>2: val=0 elif zp==zm: val=0.5 elif zm==2: val=0.5**(3-zp) elif zp==2: val=1-0.5**(3-zm) elif zm==0 and zp==1: val=9/16 elif zp==0 and zm==1: val=7/16 else: raise NotImplementedError(zp,zm) return val path = '/cloud/Public/_data/neuropercolation/1lay/steps=100000/' def phi(dim,statestr,partstr,eps): length = dim**2 eta = 1-eps state = np.array([int(q) for q in statestr]) state = list(state.reshape((dim,dim))) state = [list([int(cell) for cell in row]) for row in state] part = np.array([int(p) for p in partstr]) part = list(part.reshape((dim,dim))) part = [list([int(cell) for cell in row]) for row in part] inp = [[q+sum([state[(i+1)%dim][j], state[(i-1)%dim][j], state[i][(j+1)%dim], state[i][(j-1)%dim] ]) for j,q in enumerate(row)] for i,row in enumerate(state)] beps = [[int(inp[i][j]>2)*eta+int(inp[i][j]<3)*eps for j,q in enumerate(row)] for i,row in enumerate(state)] zplus = [[q+sum([state[(i+1)%dim][j]*(part[i][j]==part[(i+1)%dim][j]), state[(i-1)%dim][j]*(part[i][j]==part[(i-1)%dim][j]), state[i][(j+1)%dim]*(part[i][j]==part[i][(j+1)%dim]), state[i][(j-1)%dim]*(part[i][j]==part[i][(j-1)%dim]) ]) for j,q in enumerate(row)] for i,row in enumerate(state)] zminus = [[sum([(1-state[(i+1)%dim][j])*(part[i][j]==part[(i+1)%dim][j]), (1-state[(i-1)%dim][j])*(part[i][j]==part[(i-1)%dim][j]), (1-state[i][(j+1)%dim])*(part[i][j]==part[i][(j+1)%dim]), (1-state[i][(j-1)%dim])*(part[i][j]==part[i][(j-1)%dim]) ]) for j,q in enumerate(row)] for i,row in enumerate(state)] kplus = [[kcomb(zplus[i][j],zminus[i][j]) for j,q in enumerate(row)] for i,row in enumerate(state)] pi = [[eps*(1-kplus[i][j]) + eta*kplus[i][j] for j,q in enumerate(row)] for i,row in enumerate(state)] crossent = [[-beps[i][j]*m.log2(pi[i][j])-(1-beps[i][j])*m.log2(1-pi[i][j]) for j,q in enumerate(row)] for i,row in enumerate(state)] return np.sum(crossent) - length*H2(eps) def MIP(dim,statestr,eps): lophi=np.inf mip = [] for parti in range(1,2**(dim**2-1)): partstr = bin(parti)[2:].zfill(dim**2) print(partstr) curphi = phi(dim,statestr,partstr,eps) if curphi