#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Sep 9 22:23:30 2023 @author: astral """ import os import json import math as m import numpy as np from numpy.linalg import norm from datetime import datetime from random import sample as choose from plot import qtplot from neuropercolation import Simulate4Layers eps_space = list(np.linspace(0.01,0.2,20)) def resultant(sample): phase_x = [m.cos(ind) for ind in sample] phase_y = [m.sin(ind) for ind in sample] return (np.average(phase_x), np.average(phase_y)) def new_folder(path): if not os.path.exists(path): os.makedirs(path) phase = np.vectorize(lambda x,y: (m.atan2(y,x)+m.pi)%(2*m.pi)-m.pi) diff = np.vectorize(lambda x,y: (y-x+m.pi)%(2*m.pi)-m.pi) H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x) extremes = None maxdt = 200 stp = 1000100 batch = 0 print(f'Started at {datetime.now()}') for dim in [9]: for eps in eps_space[4:]: eps = round(eps,3) path='/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps=1000100/dim=09/batch=0/' try: with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f: phase_diff = json.load(f) except: with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f: activation = json.load(f)[100:] osc = list(zip(*activation)) phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)]) phase_diff = diff(phase_abs[0],phase_abs[1]) phase_diff = [round(pha,6) for pha in phase_diff] with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f: json.dump(list(phase_diff), f, indent=1) all_res = norm(resultant(phase_diff)) av_diff = np.arccos(all_res) try: with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f: ei = json.load(f) except: with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f: channels = json.load(f)[100:] ei = [round(np.sum(cha)*(1-H2(eps)),6) for cha in channels] with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f: json.dump(ei, f, indent=1) extremes = 10000 #[l//2 for l in lens] ei_ind = [i for i,val in enumerate(ei[:-maxdt]) if val>0] print(f'{len(ei_ind)} states with positive EI') samples = choose(ei_ind, extremes) sampling = 'allpos_ei' with open(path+f"eps={round(eps,3):.3f}_states.txt", 'r', encoding='utf-8') as f: states = json.load(f)[100:] with open(path+f"eps={round(eps,3):.3f}_coupling.txt", 'r', encoding='utf-8') as f: coupling = json.load(f) coupling = [tuple(edge) for edge in coupling] phase_pairs = [] ei_pairs = [] for num,i in enumerate(samples): causal_init = states[i].translate(str.maketrans('', '', '.-=')) sim = Simulate4Layers( dim, eps, coupling=coupling, init=causal_init, noeffect=0, steps=1, draw=None, ) activation = sim._activations() channel = sim._channels() osc = list(zip(*activation)) phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)]) phasediff_c = np.round(diff(phase_abs[0],phase_abs[1]),6) ei_c = [round(np.sum(cha)*(1-H2(eps)),6) for cha in channel] max_ei_c = max([np.sum(cha) for cha in channel]) sim = Simulate4Layers( dim, eps, coupling=coupling, init=causal_init, noeffect=-1, steps=1, draw=None, ) activation = sim._activations() channel = sim._channels() osc = list(zip(*activation)) phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)]) phasediff_i = np.round(diff(phase_abs[0],phase_abs[1]),6) ei_i = [round(np.sum(cha)*(1-H2(eps)),6) for cha in channel] max_ei_i = max([np.sum(cha) for cha in channel]) phase_pairs.append((phasediff_i[-1], phasediff_c[-1])) ei_pairs.append((ei_i[-1], ei_c[-1])) savepath = path + sampling + '/' new_folder(savepath) if num%100==99: print(f'Done {num:0{len(str(extremes))}d}') with open(savepath+f"eps={round(eps,3):.3f}_phase_pairs.txt", 'w', encoding='utf-8') as f: json.dump(phase_pairs, f, indent=1) with open(savepath+f"eps={round(eps,3):.3f}_ei_pairs.txt", 'w', encoding='utf-8') as f: json.dump(ei_pairs, f, indent=1) phases_i, phases_c = zip(*phase_pairs) ei_i, ei_c = zip(*ei_pairs) phase_space = np.linspace(0,m.pi,100+1) ei_space = np.linspace(0,np.max([ei_i,ei_c]),100+1) phase_dist_i = [len([ph for ph in phases_i if low<=ph