#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Aug 21 14:59:22 2023 @author: astral """ import json import math as m import numpy as np from numpy.linalg import norm from datetime import datetime from random import sample as choose from plot import qtplot eps_space = list(np.linspace(0.01,0.2,20)) def resultant(sample): phase_x = [m.cos(ind) for ind in sample] phase_y = [m.sin(ind) for ind in sample] return (np.average(phase_x), np.average(phase_y)) def H2(x): return -x*m.log2(x)-(1-x)*m.log2(1-x) extremes = None maxdt = 300 for dim in [9]: for eps in eps_space: path=f'/cloud/Public/_data/neuropercolation/4lay/cons=27-3diag_steps=1000100/dim=09/batch=0/' try: with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f: phase_diff = json.load(f) except: with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f: activation = json.load(f)[100:] osc = list(zip(*activation)) phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)]) phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f: json.dump(list(phase_diff), f, indent=1) all_res = norm(resultant(phase_diff)) av_diff = np.arccos(all_res) try: with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f: ei = json.load(f) except: with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f: channels = json.load(f)[100:] ei = [np.sum(cha)*(1-H2(eps)) for cha in channels] with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f: json.dump(ei, f, indent=1) pha_center = av_diff pha_dev = m.pi/8 orth_ind = sorted([i for i,val in enumerate(ei[:-maxdt]) if (pha_center-pha_dev)<=abs(phase_diff[i])<=(pha_center+pha_dev)], key = lambda i: ei[i]) if extremes is None: extremes = len(orth_ind)//4000*1000 print(len(orth_ind)) #print(all_res, av_diff) bot_ind = orth_ind[ :extremes] top_ind = orth_ind[-extremes: ] # bot_ei_pool = [ei for ei in enumerate(ei[:-maxdt]) if ei[1] <= bot_ei[1]] # top_ei_pool = [ei for ei in enumerate(ei[:-maxdt]) if ei[1] >= top_ei[1]] # bot_eis = choose(bot_ei_pool, extremes) # top_eis = choose(top_ei_pool, extremes) # bot_ind = [enum[0] for enum in bot_ei] # top_ind = [enum[0] for enum in top_ei] bot_res = [] top_res = [] orth_res = [] tot_res = [] bot_ei = [] top_ei = [] orth_ei = [] tot_ei = [] for dt in range(maxdt): bot_res.append( norm(resultant([phase_diff[i+dt] for i in bot_ind])) ) top_res.append( norm( resultant([phase_diff[i+dt] for i in top_ind])) ) orth_res.append( norm( resultant([phase_diff[i+dt] for i in orth_ind])) ) tot_res.append( norm( resultant(phase_diff[dt:dt-maxdt])) ) bot_ei.append( np.average([ei[i+dt] for i in bot_ind]) ) top_ei.append( np.average([ei[i+dt] for i in top_ind]) ) orth_ei.append( np.average([ei[i+dt] for i in orth_ind]) ) tot_ei.append( np.average(ei[dt:dt-maxdt]) ) if dt%100==99: print(f'Done dt={dt}') qtplot(f'Diachronic resultant for dim={dim} with 4 layers', [np.array(range(maxdt))]*4, [bot_res, top_res, orth_res, tot_res], ['Resultant ev of bottom {extremes} ei', 'Resultant ev of top {extremes} ei', 'Resultant ev of phase filtered ei', 'Average Resultant'], x_tag = 'dt', y_tag = 'concentration', export=True, path=path, filename=f'Diachronic Resultant for eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png', close=True) qtplot(f'Diachronic ei for dim={dim} with 4 layers', [np.array(range(maxdt))]*4, [bot_ei, top_ei, orth_ei, tot_ei], ['EI ev of bottom {extremes} ei', 'EI ev of top {extremes} ei', 'EI ev of phase filtered ei', 'Average EI'], x_tag = 'dt', y_tag = 'average ei', export=True, path=path, filename=f'Diachronic EI for eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png', close=True) print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') # qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers', # [[0]+eps_space]*2, # [max(av_ei)*diff_res, av_ei], # ['Resultant', 'avEI'], # export=True, # path=path, # filename=f'Resultant and EI for dim={dim}.png', # close=True)