#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Aug 21 14:59:22 2023 @author: astral """ import json import math as m import numpy as np from datetime import datetime from plot import qtplot eps_space = list(np.linspace(0.005,0.5,100)) def resultant(sample): phase_x = [m.cos(ind) for ind in sample] phase_y = [m.sin(ind) for ind in sample] return (np.average(phase_x), np.average(phase_y)) def H2(x): return -x*m.log2(x)-(1-x)*m.log2(1-x) for dim in [7]: diff_res = [0] av_ei = [0] for eps in eps_space: path=f'/cloud/Public/_data/neuropercolation/4lay/steps=100000/dim={dim:02}/' with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f: activation = json.load(f)[100:] osc = list(zip(*activation)) phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)]) phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi res = np.linalg.norm(resultant(phase_diff)) diff_res.append(res) with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f: channels = json.load(f)[100:] ei = [np.sum(cha)*(1-H2(eps)) for cha in channels] av_ei.append(np.average(ei)) print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers', [[0]+eps_space]*2, [diff_res, av_ei], ['Resultant', 'avEI'], export=True, path=path, filename=f'Resultant and EI for dim={dim}.png', close=True)