from enum import Enum from operator import add from itertools import product class EdgeRule(Enum): IGNORE_EDGE_CELLS = 0 IGNORE_MISSING_NEIGHBORS_OF_EDGE_CELLS = 1 FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS = 2 class Neighborhood: def __init__(self, neighbors_relative, edge_rule: EdgeRule): """ Defines a neighborhood of a cell. :param neighbors_relative: List of relative coordinates for cell neighbors. :param edge_rule: EdgeRule to define, how cells on the edge of the grid will be handled. """ self._rel_neighbors = neighbors_relative self.__edge_rule = edge_rule self.__grid_dimensions = [] def calculate_cell_neighbor_coordinates(self, cell_coordinate, grid_dimensions): """ Get a list of absolute coordinates for the cell neighbors. The EdgeRule can reduce the returned neighbor count. :param cell_coordinate: The coordinate of the cell. :param grid_dimensions: The dimensions of the grid, to apply the edge the rule. :return: list of absolute coordinates for the cells neighbors. """ self.__grid_dimensions = grid_dimensions return list(self.__neighbors_generator(cell_coordinate)) def __neighbors_generator(self, cell_coordinate): if not self.__does_ignore_edge_cell_rule_apply(cell_coordinate): for rel_n in self._rel_neighbors: yield from self.__calculate_abs_neighbor_and_decide_validity(cell_coordinate, rel_n) def __calculate_abs_neighbor_and_decide_validity(self, cell_coordinate, rel_n): n = list(map(add, rel_n, cell_coordinate)) n_folded = self.__apply_edge_overflow(n) if n == n_folded or self.__edge_rule == EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS: yield n_folded def __does_ignore_edge_cell_rule_apply(self, coordinate): return self.__edge_rule == EdgeRule.IGNORE_EDGE_CELLS and self.__is_coordinate_on_an_edge(coordinate) def __is_coordinate_on_an_edge(self, coordinate): return all(0 == ci or ci == di-1 for ci, di in zip(coordinate, self.__grid_dimensions)) def __apply_edge_overflow(self, n): return list(map(lambda ni, di: (ni + di) % di, n, self.__grid_dimensions)) class MooreNeighborhood(Neighborhood): def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, range_=1, dimension=2): super().__init__(tuple(_rel_neighbor_generator(dimension, range_, lambda rel_n: True)), edge_rule) class VonNeumannNeighborhood(Neighborhood): def __init__(self, edge_rule: EdgeRule = EdgeRule.IGNORE_EDGE_CELLS, range_=1, dimension=2): self.range_ = range_ super().__init__(tuple(_rel_neighbor_generator(dimension, range_, self.neighbor_rule)), edge_rule) def neighbor_rule(self, rel_n): cross_sum = 0 for ci in rel_n: cross_sum += abs(ci) return cross_sum <= self.range_ def _rel_neighbor_generator(dimension, range_, rule): for c in product(range(-range_, range_ + 1), repeat=dimension): if rule(c) and c != (0, ) * dimension: yield tuple(reversed(c))