#!/usr/bin/env python3 import random from multiprocessing import freeze_support from cellular_automaton import * class TestRule(Rule): @staticmethod def evolve_cell(last_cell_state, last_neighbour_states): try: return last_neighbour_states[0] except IndexError: print("damn neighbours") pass return False class MyState(CellState): def __init__(self): rand = random.randrange(0, 101, 1) init = 0 if rand > 99: init = 1 super().__init__((float(init),), draw_first_state=False) def get_state_draw_color(self, iteration): red = 0 if self.get_state_of_last_iteration(iteration)[0]: red = 255 return [red, 0, 0] def make_cellular_automaton(dimension, neighborhood, rule, state_class): cells = CAFactory.make_cellular_automaton(dimension=dimension, neighborhood=neighborhood, state_class=state_class) return CellularAutomaton(cells, dimension, rule) if __name__ == "__main__": freeze_support() random.seed(1000) # best single is 400/400 with 0,2 ca speed and 0,09 redraw / multi is 300/300 with 0.083 neighborhood = MooreNeighborhood(EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS) ca = make_cellular_automaton(dimension=[400, 400], neighborhood=neighborhood, rule=TestRule(), state_class=MyState) ca_processor = CellularAutomatonProcessor(process_count=1, cellular_automaton=ca) ca_window = PyGameFor2D(window_size=[1000, 800], cellular_automaton=ca) ca_window.main_loop(cellular_automaton_processor=ca_processor, ca_iterations_per_draw=1)