#!/usr/bin/env python3 import random from multiprocessing import freeze_support from cellular_automaton import * class TestRule(Rule): @staticmethod def evolve_cell(last_cell_state, neighbours_last_states): try: return neighbours_last_states[0] except IndexError: return last_cell_state class MyState(SynchronousCellState): def __init__(self): rand = random.randrange(0, 101, 1) init = max(.0, float(rand - 99)) super().__init__((init,), draw_first_state=init > 0) def get_state_draw_color(self, iteration): state1 = self.get_state_of_iteration(iteration)[0] return [255 if state1 else 0, 0, 0] def make_cellular_automaton(dimension, neighborhood, rule, state_class): cells = CAFactory.make_cellular_automaton(dimension=dimension, neighborhood=neighborhood, state_class=state_class) return CellularAutomaton(cells, dimension, rule) if __name__ == "__main__": freeze_support() random.seed(1000) # best single is 400/400 with 0,2 ca speed and 0,09 redraw / multi is 300/300 with 0.083 neighborhood = MooreNeighborhood(EdgeRule.FIRST_AND_LAST_CELL_OF_DIMENSION_ARE_NEIGHBORS) ca = make_cellular_automaton(dimension=[100, 100], neighborhood=neighborhood, rule=TestRule(), state_class=MyState) ca_processor = CellularAutomatonMultiProcessor(cellular_automaton=ca, process_count=4) ca_window = PyGameFor2D(window_size=[1000, 800], cellular_automaton=ca) ca_window.main_loop(cellular_automaton_processor=ca_processor, ca_iterations_per_draw=1)