# -*- coding: utf-8 -*- """ Created on Tue Aug 30 14:25:12 2022 @author: timofej """ import sys import os import json from plot import qtplot import math as m import numpy as np vect = np.vectorize @vect def log2(x): try: return m.log2(x) except ValueError: if x==0: return float(0) else: raise def new_folder(path): if not os.path.exists(path): os.makedirs(path) return path path = '/cloud/Public/_data/neuropercolation/1lay/steps=1000100/' suffix = '' chi = chr(967) vareps = chr(949) vals = [[],[]] runsteps = 1000100 eps_space = np.linspace(0.005, 0.5, 100) eps_space = eps_space[1::2] dims = list(range(3,10))#+[16,49] mode='density' ma=[] s=[] k=[] mk=[] lastkurt=None for dim in dims[-1:]: dimpath = new_folder(path + f'dim={dim:02}/') for epsilon in eps_space: with open(dimpath+f"eps={round(epsilon,3):.3f}_activation.txt", 'r', encoding='utf-8') as f: activation = np.array(json.load(f)[:500]) qtplot(f"Activity time series for eps={round(epsilon,3):.3f}", [list(range(500))], [activation], x_tag = 'time step', y_tag = f'activity density', y_range = (-1,1), export=True, path=dimpath+"evolution/", filename=f'eps={round(epsilon,3):.3f}_evolution.png', close=True) mode = 'density' #%%