#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Aug 21 14:59:22 2023 @author: timofej """ import json import math as m import numpy as np from numpy.linalg import norm from datetime import datetime from random import sample as choose from plot import qtplot eps_space = list(np.linspace(0.01,0.2,20)) def resultant(sample): phase_x = [m.cos(ind) for ind in sample] phase_y = [m.sin(ind) for ind in sample] return (np.average(phase_x), np.average(phase_y)) phase = lambda x,y: (m.atan2(y,x)+m.pi)%(2*m.pi)-m.pi H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x) extremes = None maxdt = 300 for dim in [7]: for eps in eps_space: path=f'/cloud/Public/_data/neuropercolation/4lay/cons=9-3dist_steps=1000100/dim=09/batch=1/' try: with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f: phase_diff = json.load(f) except: with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f: activation = json.load(f)[100:] osc = list(zip(*activation)) phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)]) phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f: json.dump(list(phase_diff), f, indent=1) all_res = norm(resultant(phase_diff)) av_diff = np.arccos(all_res) try: with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f: ei = json.load(f) except: with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f: channels = json.load(f)[100:] ei = [np.sum(cha)*(1-H2(eps)) for cha in channels] with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f: json.dump(ei, f, indent=1) pha_center = av_diff pha_dev = m.pi/32 from_sync = lambda i: True if abs(phase_diff[i])<0.08*m.pi else False if 0.42*m.pi0 else None to_sync = lambda i: True if abs(phase_diff[i])<0.08*m.pi else False if 0.42*m.pi0] devm_out_ind = [i for i in dev_out_ind if phase_diff[i]<0] devp_out_ind = [i for i in dev_out_ind if phase_diff[i]>0] if extremes is None: extremes = min(len(dev_in_ind),len(dev_out_ind))//1000*100 print(len(dev_out_ind), len(dev_in_ind)) #print(all_res, av_diff) bot_in_ind = dev_in_ind[ :extremes] top_in_ind = dev_in_ind[-extremes: ] bot_out_ind = dev_out_ind[ :extremes] top_out_ind = dev_out_ind[-extremes: ] bot_ind = bot_in_ind + bot_out_ind top_ind = top_in_ind + top_out_ind bot_res = [] top_res = [] dev_res = [] tot_res = [] bot_ph = [] top_ph = [] dev_ph = [] tot_ph = [] bot_ei = [] top_ei = [] dev_ei = [] tot_ei = [] for dt in range(maxdt): bot_pha = [[abs(phase_diff[i+dt]) for i in bot_in_ind], [abs(phase_diff[i+dt]) for i in bot_out_ind]] top_pha = [[abs(phase_diff[i+dt]) for i in top_in_ind], [abs(phase_diff[i+dt]) for i in top_out_ind]] dev_pha = [[abs(phase_diff[i+dt]) for i in dev_in_ind], [abs(phase_diff[i+dt]) for i in dev_out_ind]] tot_pha = np.abs(phase_diff[dt:dt-maxdt]) bot_res.append( [norm(resultant(bot_pha[i])) for i in [0,1]] ) top_res.append( [norm(resultant(top_pha[i])) for i in [0,1]] ) dev_res.append( [norm(resultant(dev_pha[i])) for i in [0,1]] ) tot_res.append( norm(resultant(tot_pha)) ) bot_ph.append( [phase(*resultant(bot_pha[i])) for i in [0,1]] ) top_ph.append( [phase(*resultant(top_pha[i])) for i in [0,1]] ) dev_ph.append( [phase(*resultant(dev_pha[i])) for i in [0,1]] ) tot_ph.append( phase(*resultant(tot_pha)) ) bot_ei.append( np.average([ei[i+dt] for i in bot_ind]) ) top_ei.append( np.average([ei[i+dt] for i in top_ind]) ) dev_ei.append( np.average([ei[i+dt] for i in dev_ind]) ) tot_ei.append( np.average(ei[dt:dt-maxdt]) ) if dt%100==99: print(f'Done dt={dt}') bot_res = list(zip(*bot_res)) top_res = list(zip(*top_res)) dev_res = list(zip(*dev_res)) bot_ph = list(zip(*bot_ph)) top_ph = list(zip(*top_ph)) dev_ph = list(zip(*dev_ph)) qtplot(f'Diachronic resultant for dim={dim} with 4 layers', [np.array(range(maxdt))]*4, [bot_res[0], top_res[0], dev_res[0], tot_res], ['in bottom {extremes} ei', 'in top {extremes} ei', 'in all filtered {len(dev_in_ind)} ei', 'Average Resultant'], x_tag = 'dt', y_tag = 'concentration', export=True, path=path+'inout/', filename=f'Diachronic Resultant Norm in eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png', close=True) qtplot(f'Diachronic resultant for dim={dim} with 4 layers', [np.array(range(maxdt))]*4, [bot_res[1], top_res[1], dev_res[1], tot_res], ['out bottom {extremes} ei', 'out top {extremes} ei', 'out all filtered {len(dev_out_ind)} ei', 'Average Resultant'], x_tag = 'dt', y_tag = 'concentration', export=True, path=path+'inout/', filename=f'Diachronic Resultant Norm out eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png', close=True) qtplot(f'Diachronic resultant phase for dim={dim} with 4 layers', [np.array(range(maxdt))]*4, [bot_ph[0], top_ph[0], dev_ph[0], tot_ph], ['in bottom {extremes} ei', 'in top {extremes} ei', 'in all filtered {len(dev_in_ind)} ei', 'Average'], x_tag = 'dt', y_tag = 'phase', export=True, path=path+'inout/', filename=f'Diachronic Resultant Phase in eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png', close=True) qtplot(f'Diachronic resultant phase for dim={dim} with 4 layers', [np.array(range(maxdt))]*4, [bot_ph[1], top_ph[1], dev_ph[1], tot_ph], ['out bottom {extremes} ei', 'out top {extremes} ei', 'out all filtered {len(dev_out_ind)} ei', 'Average'], x_tag = 'dt', y_tag = 'phase', export=True, path=path+'inout/', filename=f'Diachronic Resultant Phase out eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png', close=True) # qtplot(f'Diachronic ei for dim={dim} with 4 layers', # [np.array(range(maxdt))]*4, # [bot_ei, top_ei, dev_ei, tot_ei], # ['EI ev of bottom {extremes} ei', 'EI ev of top {extremes} ei', # 'EI ev of phase filtered ei', 'Average EI'], # x_tag = 'dt', # y_tag = 'average ei', # export=True, # path=path+'plots/', # filename=f'Diachronic EI balanced for eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png', # close=True) print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') # qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers', # [[0]+eps_space]*2, # [max(av_ei)*diff_res, av_ei], # ['Resultant', 'avEI'], # export=True, # path=path, # filename=f'Resultant and EI for dim={dim}.png', # close=True)