neuropercolation/evaluation/sign.py
2023-12-14 19:49:44 +00:00

375 lines
14 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 9 22:23:30 2023
@author: timofej
"""
def sampling(dim,eps,samplemethod,extremes,dtmax,noeff=1):
print(f'Starting causal simulation with dim={dim}, eps={eps:.3f}, {samplemethod}, {extremes} extremes for dt={dtmax} and noeff={noeff:03d}')
import os
import json
import math as m
import numpy as np
from numpy.linalg import norm
from datetime import datetime
from random import sample as choose
from plot import qtplot
from neuropercolation import Simulate4Layers
eps_space = list(np.linspace(0.01,0.2,20))
def resultant(sample):
phase_x = [m.cos(ind) for ind in sample]
phase_y = [m.sin(ind) for ind in sample]
return (np.average(phase_x), np.average(phase_y))
def new_folder(path):
if not os.path.exists(path):
os.makedirs(path)
phase = np.vectorize(lambda x,y: (m.atan2(y,x)+m.pi)%(2*m.pi)-m.pi)
diff = np.vectorize(lambda x,y: (y-x+m.pi)%(2*m.pi)-m.pi)
H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x)
#print(f'Started at {datetime.now()} with eps={eps:.3f}')
eps = round(eps,3)
path='/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps=1000100/dim=09/batch=0/'
try:
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f:
phase_diff = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
activation = json.load(f)[100:]
osc = list(zip(*activation))
phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phase_diff = diff(phase_abs[0],phase_abs[1])
phase_diff = [round(pha,6) for pha in phase_diff]
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f:
json.dump(list(phase_diff), f, indent=1)
all_res = norm(resultant(phase_diff))
av_diff = np.arccos(all_res)
try:
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f:
ei = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f:
channels = json.load(f)[100:]
ei = [round(np.sum(cha)*(1-H2(eps)),6) for cha in channels]
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f:
json.dump(ei, f, indent=1)
ei_ind = [i for i,val in enumerate(ei) if val>0]
print(f'{len(ei_ind)} states with positive EI')
samples = choose(ei_ind, extremes)
with open(path+f"eps={round(eps,3):.3f}_states.txt", 'r', encoding='utf-8') as f:
states = json.load(f)[100:]
with open(path+f"eps={round(eps,3):.3f}_coupling.txt", 'r', encoding='utf-8') as f:
coupling = json.load(f)
coupling = [tuple(edge) for edge in coupling]
phase_pairs = [[] for dt in range(dtmax+1)]
ei_pairs = [[] for dt in range(dtmax+1)]
for num,i in enumerate(samples):
causal_init = states[i].translate(str.maketrans('', '', '.-='))
sim = Simulate4Layers( dim,
eps,
coupling=coupling,
init=causal_init,
noeffect=noeff-1,
steps=dtmax,
draw=None,
)
activation = sim._activations()
channel = sim._channels()
osc = list(zip(*activation))
phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phasediff_c = diff(phase_abs[0],phase_abs[1])
ei_c = [round(np.sum(cha)*(1-H2(eps)),6) for cha in channel]
max_ei_c = max([np.sum(cha) for cha in channel])
sim = Simulate4Layers( dim,
eps,
coupling=coupling,
init=causal_init,
noeffect=-1,
steps=dtmax,
draw=None,
)
activation = sim._activations()
channel = sim._channels()
osc = list(zip(*activation))
phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phasediff_i = diff(phase_abs[0],phase_abs[1])
ei_i = [round(np.sum(cha)*(1-H2(eps)),6) for cha in channel]
max_ei_i = max([np.sum(cha) for cha in channel])
for dt in range(1,dtmax+1):
phase_pairs[dt].append((i, phasediff_i[dt], phasediff_c[dt]))
ei_pairs[dt].append((i, ei_i[dt], ei_c[dt]))
if num%1000==999:
print(f'Done {num:0{len(str(extremes))}d}')
for dt in range(1,dtmax+1):
savepath = path + samplemethod + f'_samples={extremes}/dt={dt}/noeff={noeff:03d}/'
new_folder(savepath)
with open(savepath+f"eps={round(eps,3):.3f}_phase_pairs.txt", 'w', encoding='utf-8') as f:
json.dump(phase_pairs[dt], f, indent=1)
with open(savepath+f"eps={round(eps,3):.3f}_ei_pairs.txt", 'w', encoding='utf-8') as f:
json.dump(ei_pairs[dt], f, indent=1)
def plotting(dim,eps,samplemethod,extremes,dt):
import os
import json
import math as m
import numpy as np
from numpy.linalg import norm
from datetime import datetime
from random import sample as choose
from plot import qtplot
from neuropercolation import Simulate4Layers
eps_space = list(np.linspace(0.01,0.2,20))
def resultant(sample):
phase_x = [m.cos(ind) for ind in sample]
phase_y = [m.sin(ind) for ind in sample]
return (np.average(phase_x), np.average(phase_y))
def new_folder(path):
if not os.path.exists(path):
os.makedirs(path)
phase = np.vectorize(lambda x,y: (m.atan2(y,x)+m.pi)%(2*m.pi)-m.pi)
diff = np.vectorize(lambda x,y: (y-x+m.pi)%(2*m.pi)-m.pi)
H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x)
print(f'Started at {datetime.now()} with eps={eps:.3f}')
eps = round(eps,3)
path='/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps=1000100/dim=09/batch=0/'
savepath = path + samplemethod + f'_samples={extremes}/dt={dt}/'
try:
with open(savepath+f"eps={round(eps,3):.3f}_phase_pairs.txt", 'r', encoding='utf-8') as f:
phase_pairs = json.load(f)
with open(savepath+f"eps={round(eps,3):.3f}_ei_pairs.txt", 'r', encoding='utf-8') as f:
ei_pairs = json.load(f)
except:
sampling(dim,eps,samplemethod,extremes,dt)
with open(savepath+f"eps={round(eps,3):.3f}_phase_pairs.txt", 'r', encoding='utf-8') as f:
phase_pairs = json.load(f)
with open(savepath+f"eps={round(eps,3):.3f}_ei_pairs.txt", 'r', encoding='utf-8') as f:
ei_pairs = json.load(f)
t, phases_i, phases_c = zip(*phase_pairs)
t, ei_i, ei_c = zip(*ei_pairs)
extremes = len(t)
phases_cdiff = [abs(phases_i[i])-abs(phases_c[i]) for i in range(len(t))]
phase_space = np.linspace(-m.pi,m.pi,101)
absph_space = np.linspace(0,m.pi,50+1)
cdiff_space = np.linspace(min(phases_cdiff),max(phases_cdiff),51)
phase_dist_i = [len([ph for ph in phases_i if (phase_space[j]+phase_space[j-1])/2<=ph<(phase_space[j]+phase_space[j+1])/2])/len(t)
for j in range(100)]
phase_dist_c = [len([ph for ph in phases_c if (phase_space[j]+phase_space[j-1])/2<=ph<(phase_space[j]+phase_space[j+1])/2])/len(t)
for j in range(100)]
absph_dist_i = [len([ph for ph in phases_i if low<=abs(ph)<high])/len(t) for low,high in zip(absph_space[:-1],absph_space[1:])]
absph_dist_c = [len([ph for ph in phases_c if low<=abs(ph)<high])/len(t) for low,high in zip(absph_space[:-1],absph_space[1:])]
cdiff_dist = [len([diff for diff in phases_cdiff if low<=diff<high])/len(t) for low,high in zip(cdiff_space[:-1],cdiff_space[1:])]
max_cha_i = max([round(e/(1-H2(eps))) for e in ei_i])
max_cha_c = max([round(e/(1-H2(eps))) for e in ei_c])
max_cha = max(max_cha_i, max_cha_c)
ei_space = np.linspace(0,np.max([ei_i,ei_c]),max_cha+1)
ei_dist_i = [len([e for e in ei_i if round(e/(1-H2(eps)))==val])/len(t) for val in range(max_cha)]
ei_dist_c = [len([e for e in ei_c if round(e/(1-H2(eps)))==val])/len(t) for val in range(max_cha)]
qtplot(f'Phase distribution for dt={dt} dim={dim} eps={eps:.3f} with 4 layers',
[absph_space[:-1]]*2,
[absph_dist_i, absph_dist_c],
['Phase dist with ei',
'Phase dist without ei'],
x_tag = 'phase',
y_tag = 'density',
export=True,
path=savepath,
filename=f'Phase dist eps={round(eps,3):.3f} dim={dim} extremes={extremes}.png',
close=True)
qtplot(f'Phase distribution for dt={dt} dim={dim} eps={eps:.3f} with 4 layers',
[phase_space[:-1]]*2,
[phase_dist_i, phase_dist_c],
['Phase dist with ei',
'Phase dist without ei'],
x_tag = 'phase',
y_tag = 'density',
export=True,
path=savepath,
filename=f'Phase original dist eps={round(eps,3):.3f} dim={dim} extremes={extremes}.png',
close=True)
qtplot(f'Phase causal diff distribution for dt={dt} dim={dim} eps={eps:.3f} with 4 layers',
[cdiff_space[:-1]],
[cdiff_dist],
['Phase causal difference dist with ei'],
x_tag = 'sync raise',
y_tag = 'density',
export=True,
path=savepath,
filename=f'Phase causal diff dist eps={round(eps,3):.3f} dim={dim} extremes={extremes}.png',
close=True)
qtplot(f'EI distribution for dt={dt} dim={dim} eps={eps:.3f} with 4 layers',
[ei_space[:-1]]*2,
[ei_dist_i, ei_dist_c],
['EI dist with ei',
'EI dist without ei'],
x_tag = 'ei',
y_tag = 'density',
export=True,
path=savepath,
filename=f'EI dist eps={round(eps,3):.3f} dim={dim} extremes={extremes}.png',
close=True)
ttest(dim,eps,samplemethod,extremes,dt)
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')
def ttest(dim,eps,samplemethod,extremes,dt):
from scipy.stats import ttest_rel, ttest_1samp, normaltest
import numpy as np
import json
eps = round(eps,3)
path='/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps=1000100/dim=09/batch=0/'
savepath = path + samplemethod + f'_samples={extremes}/dt={dt}/'
try:
with open(savepath+f"eps={round(eps,3):.3f}_phase_pairs.txt", 'r', encoding='utf-8') as f:
phase_pairs = json.load(f)
with open(savepath+f"eps={round(eps,3):.3f}_ei_pairs.txt", 'r', encoding='utf-8') as f:
ei_pairs = json.load(f)
except:
sampling(dim,eps,samplemethod,extremes,dt)
with open(savepath+f"eps={round(eps,3):.3f}_phase_pairs.txt", 'r', encoding='utf-8') as f:
phase_pairs = json.load(f)
with open(savepath+f"eps={round(eps,3):.3f}_ei_pairs.txt", 'r', encoding='utf-8') as f:
ei_pairs = json.load(f)
t, phases_i, phases_c = zip(*phase_pairs)
t, ei_i, ei_c = zip(*ei_pairs)
phases_cdiff = [abs(phases_i[i])-abs(phases_c[i]) for i in range(len(t))]
stat = phases_cdiff
stat_av = np.average(stat)
print('===============')
print(f'For eps={eps} and dt={dt}: Mean={stat_av}')
print('normaltest: pval='+str(normaltest(stat).pvalue))
print('ttest: pval='+str(ttest_1samp(stat,0).pvalue))
print('===============')
def full_stats(dim,eps,samplemethod,extremes,dt,ret='stats',noeff=1):
from scipy.stats import ttest_rel, ttest_1samp, normaltest, wilcoxon
import numpy as np
import json
import math as m
from random import random
from numpy.linalg import norm
def resultant(sample):
phase_x = [m.cos(ind) for ind in sample]
phase_y = [m.sin(ind) for ind in sample]
return (np.average(phase_x), np.average(phase_y))
phase = np.vectorize(lambda x,y: (m.atan2(y,x)+m.pi)%(2*m.pi)-m.pi)
diff = np.vectorize(lambda x,y: (y-x+m.pi)%(2*m.pi)-m.pi)
H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x)
eps = round(eps,3)
path='/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps=1000100/dim=09/batch=0/'
savepath = path + samplemethod + f'_samples={extremes}/dt={dt}/noeff={noeff:03d}/'
try:
with open(savepath+f"eps={round(eps,3):.3f}_phase_pairs.txt", 'r', encoding='utf-8') as f:
phase_pairs = json.load(f)
with open(savepath+f"eps={round(eps,3):.3f}_ei_pairs.txt", 'r', encoding='utf-8') as f:
ei_pairs = json.load(f)
except:
sampling(dim,eps,samplemethod,extremes,dt,noeff=noeff)
with open(savepath+f"eps={round(eps,3):.3f}_phase_pairs.txt", 'r', encoding='utf-8') as f:
phase_pairs = json.load(f)
with open(savepath+f"eps={round(eps,3):.3f}_ei_pairs.txt", 'r', encoding='utf-8') as f:
ei_pairs = json.load(f)
t, phases_i, phases_c = zip(*phase_pairs)
t, ei_i, ei_c = zip(*ei_pairs)
phases_cdiff = [abs(phases_i[i])-abs(phases_c[i]) if abs(abs(phases_i[i])-abs(phases_c[i]))!=m.pi else m.pi*(-1)**(random()<0.5)
for i in range(len(t))]
print('phases with pi diff: '+str(len([i for i in range(len(t)) if abs(abs(phases_i[i])-abs(phases_c[i]))==m.pi])))
stat = phases_cdiff
mean = np.average(stat)
std = np.std(stat)
integral = sum([1 for val in stat if val<0])/len(stat)
cohend = mean / (np.var(np.abs(phases_i),ddof=1)/2+np.var(np.abs(phases_c),ddof=1)/2)
norm_p = normaltest(stat).pvalue
ttest_p = ttest_1samp(stat,0,alternative='less').pvalue
sign_p = wilcoxon(stat,alternative='less').pvalue
print('===============')
print(f'For eps={eps} and dt={dt}: Mean={mean}')
print('normaltest: pval='+str(norm_p))
print('ttest: pval='+str(ttest_p))
print('sign: pval='+str(sign_p))
print('===============')
if ret=='stats':
return mean,std,integral,cohend,norm_p,ttest_p,sign_p
elif ret=='phases':
return norm(resultant(phases_i)), norm(resultant(phases_c))