34 lines
1.1 KiB
Python
34 lines
1.1 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Fri Aug 18 19:05:04 2023
|
|
|
|
@author: astral
|
|
"""
|
|
|
|
from datetime import datetime
|
|
import numpy as np
|
|
from neuropercolation import Simulate4Layers
|
|
|
|
eps_space = np.linspace(0.005,0.5,100)
|
|
#eps_space = np.linspace(0.135,0.15,4)
|
|
|
|
stp = 1000100
|
|
|
|
for batch in range(5):
|
|
for dim in [8]:
|
|
for eps in eps_space[1:41:2]:
|
|
eps = round(eps,3)
|
|
cons = [(n,(n+m)%dim) for n in range(dim) for m in [0,int(dim/2)]]
|
|
initstate = [[0,0],[0,0]]
|
|
sim = Simulate4Layers(dim,
|
|
eps,
|
|
coupling=cons,
|
|
init=initstate,
|
|
steps=stp,
|
|
draw=None,
|
|
res=2,
|
|
save='simple',
|
|
path=f'/cloud/Public/_data/neuropercolation/4lay/cons={len(cons)}-2diag_steps={stp}/dim={dim:02}/batch={batch}/',
|
|
)
|
|
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}') |