369 lines
16 KiB
Python
369 lines
16 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Mon Aug 21 14:59:22 2023
|
|
|
|
@author: astral
|
|
"""
|
|
|
|
import json
|
|
import math as m
|
|
import numpy as np
|
|
from numpy.linalg import norm
|
|
from datetime import datetime
|
|
from random import sample as choose
|
|
|
|
from plot import qtplot
|
|
|
|
from neuropercolation import Simulate4Layers
|
|
|
|
eps_space = list(np.linspace(0.01,0.2,20))
|
|
|
|
def resultant(sample):
|
|
phase_x = [m.cos(ind) for ind in sample]
|
|
phase_y = [m.sin(ind) for ind in sample]
|
|
|
|
return (np.average(phase_x), np.average(phase_y))
|
|
|
|
phase = np.vectorize(lambda x,y: (m.atan2(y,x)+m.pi)%(2*m.pi)-m.pi)
|
|
diff = np.vectorize(lambda x,y: (y-x+m.pi)%(2*m.pi)-m.pi)
|
|
H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x)
|
|
|
|
extremes = None
|
|
maxdt = 300
|
|
|
|
stp = 10100
|
|
batch = 0
|
|
|
|
for dim in [9]:
|
|
for eps in eps_space[1:41:2]:
|
|
path=f'/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps={stp}/dim={dim:02}/batch={batch}/'
|
|
|
|
try:
|
|
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f:
|
|
phase_diff = json.load(f)
|
|
except:
|
|
with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
|
|
activation = json.load(f)[100:]
|
|
|
|
osc = list(zip(*activation))
|
|
phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
|
|
phase_diff = diff(phase_abs[0],phase_abs[1])
|
|
|
|
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f:
|
|
json.dump(list(phase_diff), f, indent=1)
|
|
|
|
|
|
all_res = norm(resultant(phase_diff))
|
|
av_diff = np.arccos(all_res)
|
|
|
|
try:
|
|
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f:
|
|
ei = json.load(f)
|
|
except:
|
|
with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f:
|
|
channels = json.load(f)[100:]
|
|
|
|
ei = [np.sum(cha)*(1-H2(eps)) for cha in channels]
|
|
|
|
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f:
|
|
json.dump(ei, f, indent=1)
|
|
|
|
pha_center = av_diff
|
|
pha_dev = m.pi/32
|
|
|
|
from_sync = lambda i: True if abs(phase_diff[i])<0.08*m.pi else False if 0.42*m.pi<abs(phase_diff[i])<0.58*m.pi else from_sync(i-1) if i>0 else None
|
|
to_sync = lambda i: True if abs(phase_diff[i])<0.08*m.pi else False if 0.42*m.pi<abs(phase_diff[i])<0.58*m.pi else to_sync(i+1) if i+1<len(phase_diff) else None
|
|
|
|
dev_ind = sorted([i for i,val in enumerate(ei[:-maxdt]) if (pha_center-pha_dev)<=abs(phase_diff[i])<=(pha_center+pha_dev)], key = lambda i: ei[i])
|
|
dev_00 = [i for i in dev_ind if from_sync(i) and to_sync(i) ]
|
|
dev_01 = [i for i in dev_ind if from_sync(i) and to_sync(i) is False]
|
|
dev_10 = [i for i in dev_ind if from_sync(i) is False and to_sync(i) ]
|
|
dev_11 = [i for i in dev_ind if from_sync(i) is False and to_sync(i) is False]
|
|
|
|
lens = [len(dev_00),len(dev_01),len(dev_10),len(dev_11)]
|
|
|
|
#if not extremes:
|
|
extremes = [100]*4 #[l//2 for l in lens]
|
|
|
|
print(lens)
|
|
#print(all_res, av_diff)
|
|
|
|
|
|
# bot_00 = dev_00[:extremes[0]]
|
|
# bot_01 = dev_01[:extremes[1]]
|
|
# bot_10 = dev_10[:extremes[2]]
|
|
# bot_11 = dev_11[:extremes[3]]
|
|
|
|
top_00 = dev_00[-extremes[0]:]
|
|
top_01 = dev_01[-extremes[1]:]
|
|
top_10 = dev_10[-extremes[2]:]
|
|
top_11 = dev_11[-extremes[3]:]
|
|
|
|
with open(path+f"eps={round(eps,3):.3f}_states.txt", 'r', encoding='utf-8') as f:
|
|
states = json.load(f)[100:]
|
|
with open(path+f"eps={round(eps,3):.3f}_coupling.txt", 'r', encoding='utf-8') as f:
|
|
coupling = json.load(f)
|
|
coupling = [tuple(edge) for edge in coupling]
|
|
|
|
for top,name in [(top_00,'top_00'),(top_01,'top_01'),(top_10,'top_10'),(top_11,'top_11')]:
|
|
for i in top:
|
|
causal_init = states[i].translate(str.maketrans('', '', '.-='))
|
|
path_c = path+f'causal_maxdt={maxdt}/{name}/{i:0{len(str(stp))}}/'
|
|
|
|
try:
|
|
with open(path_c+f'eps={round(eps,3):.3f}_phase_diff.txt', 'r', encoding='utf-8') as f:
|
|
phasediff = json.load(f)
|
|
except:
|
|
sim=Simulate4Layers(dim,
|
|
eps,
|
|
coupling=coupling,
|
|
init=causal_init,
|
|
noeffect=0,
|
|
steps=maxdt,
|
|
draw=None,
|
|
save='all',
|
|
path=path_c,
|
|
)
|
|
|
|
with open(path_c+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
|
|
activation = json.load(f)
|
|
|
|
osc = list(zip(*activation))
|
|
phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
|
|
phasediff = diff(phase_abs[0],phase_abs[1])
|
|
|
|
with open(path_c+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f:
|
|
json.dump(list(phasediff), f, indent=1)
|
|
|
|
for top,name in [(top_00,'top_00'),(top_01,'top_01'),(top_10,'top_10'),(top_11,'top_11')]:
|
|
for i in top:
|
|
causal_init = states[i].translate(str.maketrans('', '', '.-='))
|
|
path_c = path+f'original_maxdt={maxdt}/{name}/{i:0{len(str(stp))}}/'
|
|
|
|
try:
|
|
with open(path_c+f'eps={round(eps,3):.3f}_phase_diff.txt', 'r', encoding='utf-8') as f:
|
|
phasediff = json.load(f)
|
|
except:
|
|
sim=Simulate4Layers(dim,
|
|
eps,
|
|
coupling=coupling,
|
|
init=causal_init,
|
|
noeffect=-1,
|
|
steps=maxdt,
|
|
draw=None,
|
|
save='all',
|
|
path=path_c,
|
|
)
|
|
|
|
with open(path_c+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
|
|
activation = json.load(f)
|
|
|
|
osc = list(zip(*activation))
|
|
phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
|
|
phasediff = diff(phase_abs[0],phase_abs[1])
|
|
|
|
with open(path_c+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f:
|
|
json.dump(list(phasediff), f, indent=1)
|
|
|
|
|
|
|
|
|
|
|
|
# bot_res = []
|
|
top_res = []
|
|
dis_res = []
|
|
tot_res = []
|
|
|
|
# bot_ph = []
|
|
top_ph = []
|
|
dis_ph = []
|
|
tot_ph = []
|
|
|
|
# bot_ei = []
|
|
top_ei = []
|
|
# dev_ei = []
|
|
tot_ei = []
|
|
for dt in range(maxdt):
|
|
# bot_pha = [[abs(phase_diff[i+dt]) for i in bot_00],
|
|
# [abs(phase_diff[i+dt]) for i in bot_01],
|
|
# [abs(phase_diff[i+dt]) for i in bot_10],
|
|
# [abs(phase_diff[i+dt]) for i in bot_11]]
|
|
|
|
top_pha = [[abs(phase_diff[i+dt]) for i in top_00],
|
|
[abs(phase_diff[i+dt]) for i in top_01],
|
|
[abs(phase_diff[i+dt]) for i in top_10],
|
|
[abs(phase_diff[i+dt]) for i in top_11]]
|
|
|
|
dis_00 = []
|
|
dis_01 = []
|
|
dis_10 = []
|
|
dis_11 = []
|
|
for i in top_00:
|
|
path_c = path+f'causal_maxdt={maxdt}/top_00/{i:0{len(str(stp))}}/'
|
|
with open(path_c+f'eps={round(eps,3):.3f}_phase_diff.txt', 'r', encoding='utf-8') as f:
|
|
dis_00.append(abs(json.load(f)[dt]))
|
|
for i in top_01:
|
|
path_c = path+f'causal_maxdt={maxdt}/top_01/{i:0{len(str(stp))}}/'
|
|
with open(path_c+f'eps={round(eps,3):.3f}_phase_diff.txt', 'r', encoding='utf-8') as f:
|
|
dis_01.append(abs(json.load(f)[dt]))
|
|
for i in top_10:
|
|
path_c = path+f'causal_maxdt={maxdt}/top_10/{i:0{len(str(stp))}}/'
|
|
with open(path_c+f'eps={round(eps,3):.3f}_phase_diff.txt', 'r', encoding='utf-8') as f:
|
|
dis_10.append(abs(json.load(f)[dt]))
|
|
for i in top_11:
|
|
path_c = path+f'causal_maxdt={maxdt}/top_11/{i:0{len(str(stp))}}/'
|
|
with open(path_c+f'eps={round(eps,3):.3f}_phase_diff.txt', 'r', encoding='utf-8') as f:
|
|
dis_11.append(abs(json.load(f)[dt]))
|
|
|
|
dis_pha = [dis_00, dis_01, dis_10, dis_11]
|
|
|
|
tot_pha = np.abs(phase_diff[dt:dt-maxdt])
|
|
|
|
# bot_res.append( [norm(resultant(bot_pha[i])) for i in range(4)] )
|
|
top_res.append( [norm(resultant(top_pha[i])) for i in range(4)] )
|
|
dis_res.append( [norm(resultant(dis_pha[i])) for i in range(4)] )
|
|
tot_res.append( norm(resultant(tot_pha)) )
|
|
|
|
# bot_ph.append( [phase(*resultant(bot_pha[i])) for i in range(4)] )
|
|
top_ph.append( [phase(*resultant(top_pha[i])) for i in range(4)] )
|
|
dis_ph.append( [phase(*resultant(dis_pha[i])) for i in range(4)] )
|
|
tot_ph.append( phase(*resultant(tot_pha)) )
|
|
|
|
# bot_ei.append( [np.average([ei[i+dt] for i in bot]) for bot in [bot_00,bot_01,bot_10,bot_11]] )
|
|
top_ei.append( [np.average([ei[i+dt] for i in top]) for top in [top_00,top_01,top_10,top_11]] )
|
|
# dev_ei.append( [np.average([ei[i+dt] for i in dev]) for dev in [dev_00,dev_01,dev_10,dev_11]] )
|
|
tot_ei.append( np.average(ei[dt:dt-maxdt]) )
|
|
|
|
if dt%10==0:
|
|
print(f'Done dt={dt}')
|
|
|
|
# bot_res = list(zip(*bot_res))
|
|
top_res = list(zip(*top_res))
|
|
dis_res = list(zip(*dis_res))
|
|
|
|
# bot_ph = list(zip(*bot_ph))
|
|
top_ph = list(zip(*top_ph))
|
|
dis_ph = list(zip(*dis_ph))
|
|
|
|
# bot_ei = list(zip(*bot_ei))
|
|
top_ei = list(zip(*top_ei))
|
|
# dev_ei = list(zip(*dev_ei))
|
|
|
|
plotpath = path+'4waycausal/'
|
|
|
|
qtplot(f'Diachronic resultant sync to sync for dim={dim} with 4 layers',
|
|
[np.array(range(maxdt))]*3,
|
|
[top_res[0], dis_res[0], tot_res],
|
|
|
|
['sync to sync top {extremes} ei',
|
|
'sync to sync dis {extremes} ei', 'Average Resultant'],
|
|
x_tag = 'dt',
|
|
y_tag = 'concentration',
|
|
export=True,
|
|
path=plotpath,
|
|
filename=f'Diachronic Resultant Norm eps={round(eps,3):.3f} sts dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
|
|
close=True)
|
|
qtplot(f'Diachronic resultant sync to orth for dim={dim} with 4 layers',
|
|
[np.array(range(maxdt))]*3,
|
|
[top_res[1], dis_res[1], tot_res],
|
|
['sync to orth top {extremes} ei', 'sync to orth dis {extremes} ei',
|
|
'Average Resultant'],
|
|
x_tag = 'dt',
|
|
y_tag = 'concentration',
|
|
export=True,
|
|
path=plotpath,
|
|
filename=f'Diachronic Resultant Norm eps={round(eps,3):.3f} sto dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
|
|
close=True)
|
|
qtplot(f'Diachronic resultant orth to sync for dim={dim} with 4 layers',
|
|
[np.array(range(maxdt))]*3,
|
|
[top_res[2], dis_res[2], tot_res],
|
|
['orth to sync top {extremes} ei', 'orth to sync dis {extremes} ei',
|
|
'Average Resultant'],
|
|
x_tag = 'dt',
|
|
y_tag = 'concentration',
|
|
export=True,
|
|
path=plotpath,
|
|
filename=f'Diachronic Resultant Norm eps={round(eps,3):.3f} ots dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
|
|
close=True)
|
|
qtplot(f'Diachronic resultant orth to orth for dim={dim} with 4 layers',
|
|
[np.array(range(maxdt))]*3,
|
|
[top_res[3], dis_res[3], tot_res],
|
|
['orth to orth top {extremes} ei', 'orth to orth dis {extremes} ei',
|
|
'Average Resultant'],
|
|
x_tag = 'dt',
|
|
y_tag = 'concentration',
|
|
export=True,
|
|
path=plotpath,
|
|
filename=f'Diachronic Resultant Norm eps={round(eps,3):.3f} oto dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
|
|
close=True)
|
|
|
|
qtplot(f'Diachronic resultant phase sync to sync for dim={dim} with 4 layers',
|
|
[np.array(range(maxdt))]*3,
|
|
[top_ph[0], dis_ph[0], tot_ph],
|
|
['sync to sync top {extremes} ei', 'sync to sync dis {extremes} ei',
|
|
'Average'],
|
|
x_tag = 'dt',
|
|
y_tag = 'phase',
|
|
export=True,
|
|
path=plotpath,
|
|
filename=f'Diachronic Resultant Phase eps={round(eps,3):.3f} sts dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
|
|
close=True)
|
|
qtplot(f'Diachronic resultant phase sync to orth for dim={dim} with 4 layers',
|
|
[np.array(range(maxdt))]*3,
|
|
[top_ph[1], dis_ph[1], tot_ph],
|
|
['sync to orth top {extremes} ei', 'sync to orth dis {extremes} ei',
|
|
'Average'],
|
|
x_tag = 'dt',
|
|
y_tag = 'phase',
|
|
export=True,
|
|
path=plotpath,
|
|
filename=f'Diachronic Resultant Phase eps={round(eps,3):.3f} sto dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
|
|
close=True)
|
|
qtplot(f'Diachronic resultant phase orth to sync for dim={dim} with 4 layers',
|
|
[np.array(range(maxdt))]*3,
|
|
[top_ph[2], dis_ph[2], tot_ph],
|
|
['orth to sync top {extremes} ei', 'orth to sync dos {extremes} ei',
|
|
'Average'],
|
|
x_tag = 'dt',
|
|
y_tag = 'phase',
|
|
export=True,
|
|
path=plotpath,
|
|
filename=f'Diachronic Resultant Phase eps={round(eps,3):.3f} ots dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
|
|
close=True)
|
|
qtplot(f'Diachronic resultant phase orth to orth for dim={dim} with 4 layers',
|
|
[np.array(range(maxdt))]*3,
|
|
[top_ph[3], dis_ph[3], tot_ph],
|
|
['orth to orth top {extremes} ei', 'orth to orth dis {extremes} ei',
|
|
'Average'],
|
|
x_tag = 'dt',
|
|
y_tag = 'phase',
|
|
export=True,
|
|
path=plotpath,
|
|
filename=f'Diachronic Resultant Phase eps={round(eps,3):.3f} oto dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
|
|
close=True)
|
|
|
|
# qtplot(f'Diachronic ei for dim={dim} with 4 layers',
|
|
# [np.array(range(maxdt))]*4,
|
|
# [bot_ei, top_ei, dev_ei, tot_ei],
|
|
# ['EI ev of bottom {extremes} ei', 'EI ev of top {extremes} ei',
|
|
# 'EI ev of phase filtered ei', 'Average EI'],
|
|
# x_tag = 'dt',
|
|
# y_tag = 'average ei',
|
|
# export=True,
|
|
# path=path+'plots/',
|
|
# filename=f'Diachronic EI balanced for eps={round(eps,3):.3f} dim={dim} extremes={extremes} roll{pha_dev:.3f}.png',
|
|
# close=True)
|
|
|
|
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')
|
|
|
|
# qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers',
|
|
# [[0]+eps_space]*2,
|
|
# [max(av_ei)*diff_res, av_ei],
|
|
# ['Resultant', 'avEI'],
|
|
# export=True,
|
|
# path=path,
|
|
# filename=f'Resultant and EI for dim={dim}.png',
|
|
# close=True)
|
|
|
|
|