neuropercolation/evaluation/4Layer Bootstrap.py
2023-08-23 16:25:27 +02:00

111 lines
3.8 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 21 14:59:22 2023
@author: astral
"""
import json
import math as m
import numpy as np
from numpy.linalg import norm
from datetime import datetime
from random import sample as choose
from plot import qtplot
eps_space = list(np.linspace(0.01,0.2,20))
def resultant(sample):
phase_x = [m.cos(ind) for ind in sample]
phase_y = [m.sin(ind) for ind in sample]
return (np.average(phase_x), np.average(phase_y))
def H2(x):
return -x*m.log2(x)-(1-x)*m.log2(1-x)
extremes = 50000
maxdt = 500
for dim in [7]:
for eps in eps_space:
path=f'/cloud/Public/_data/neuropercolation/4lay/steps=1000100/dim={dim:02}/'
try:
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f:
phase_diff = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
activation = json.load(f)[100:]
osc = list(zip(*activation))
phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f:
json.dump(list(phase_diff), f, indent=1)
all_res = norm(resultant(phase_diff))
try:
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f:
ei = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f:
channels = json.load(f)[100:]
ei = [np.sum(cha)*(1-H2(eps)) for cha in channels]
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f:
json.dump(ei, f, indent=1)
bot_ei = sorted(enumerate(ei[:-maxdt]), key = lambda x: x[1])[ extremes]
top_ei = sorted(enumerate(ei[:-maxdt]), key = lambda x: x[1])[-extremes]
bot_ei_pool = [ei for ei in enumerate(ei[:-maxdt]) if ei[1] <= bot_ei[1]]
top_ei_pool = [ei for ei in enumerate(ei[:-maxdt]) if ei[1] >= top_ei[1]]
bot_eis = choose(bot_ei_pool, extremes)
top_eis = choose(top_ei_pool, extremes)
bot_ind = [enum[0] for enum in bot_eis]
top_ind = [enum[0] for enum in top_eis]
bot_res = []
top_res = []
for dt in range(maxdt):
bot_pha = [phase_diff[i+dt] for i in bot_ind]
top_pha = [phase_diff[i+dt] for i in top_ind]
bot_res.append( norm(resultant(bot_pha)) )
top_res.append( norm(resultant(top_pha)) )
if dt%100==99:
print(f'Done dt={dt}')
qtplot(f'Diachronic resultant for dim={dim} with 4 layers',
[np.array(range(maxdt))]*3,
[bot_res, top_res, [all_res]*maxdt],
['Resultant ev of bottom 100 ei', 'Resultant ev of top 100 ei', 'Average Resultant'],
x_tag = 'dt',
y_tag = 'concentration',
export=True,
path=path,
filename=f'Diachronic Resultant for eps={round(eps,3)} dim={dim} extremes={extremes}.png',
close=True)
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')
# qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers',
# [[0]+eps_space]*2,
# [max(av_ei)*diff_res, av_ei],
# ['Resultant', 'avEI'],
# export=True,
# path=path,
# filename=f'Resultant and EI for dim={dim}.png',
# close=True)