neuropercolation/evaluation/4Layer Causal Significance.py

191 lines
7.2 KiB
Python
Raw Normal View History

2023-09-30 17:53:06 +00:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 9 22:23:30 2023
@author: astral
"""
import os
import json
import math as m
import numpy as np
from numpy.linalg import norm
from datetime import datetime
from random import sample as choose
from plot import qtplot
from neuropercolation import Simulate4Layers
eps_space = list(np.linspace(0.01,0.2,20))
def resultant(sample):
phase_x = [m.cos(ind) for ind in sample]
phase_y = [m.sin(ind) for ind in sample]
return (np.average(phase_x), np.average(phase_y))
def new_folder(path):
if not os.path.exists(path):
os.makedirs(path)
phase = np.vectorize(lambda x,y: (m.atan2(y,x)+m.pi)%(2*m.pi)-m.pi)
diff = np.vectorize(lambda x,y: (y-x+m.pi)%(2*m.pi)-m.pi)
H2 = lambda x: -x*m.log2(x)-(1-x)*m.log2(1-x)
extremes = None
maxdt = 200
stp = 1000100
batch = 0
print(f'Started at {datetime.now()}')
for dim in [9]:
for eps in eps_space[4:]:
eps = round(eps,3)
path='/cloud/Public/_data/neuropercolation/4lay/cons=27-knight_steps=1000100/dim=09/batch=0/'
try:
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f:
phase_diff = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
activation = json.load(f)[100:]
osc = list(zip(*activation))
phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phase_diff = diff(phase_abs[0],phase_abs[1])
phase_diff = [round(pha,6) for pha in phase_diff]
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f:
json.dump(list(phase_diff), f, indent=1)
all_res = norm(resultant(phase_diff))
av_diff = np.arccos(all_res)
try:
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f:
ei = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f:
channels = json.load(f)[100:]
ei = [round(np.sum(cha)*(1-H2(eps)),6) for cha in channels]
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f:
json.dump(ei, f, indent=1)
extremes = 10000 #[l//2 for l in lens]
ei_ind = [i for i,val in enumerate(ei[:-maxdt]) if val>0]
print(f'{len(ei_ind)} states with positive EI')
samples = choose(ei_ind, extremes)
sampling = 'allpos_ei'
with open(path+f"eps={round(eps,3):.3f}_states.txt", 'r', encoding='utf-8') as f:
states = json.load(f)[100:]
with open(path+f"eps={round(eps,3):.3f}_coupling.txt", 'r', encoding='utf-8') as f:
coupling = json.load(f)
coupling = [tuple(edge) for edge in coupling]
phase_pairs = []
ei_pairs = []
for num,i in enumerate(samples):
causal_init = states[i].translate(str.maketrans('', '', '.-='))
sim = Simulate4Layers( dim,
eps,
coupling=coupling,
init=causal_init,
noeffect=0,
steps=1,
draw=None,
)
activation = sim._activations()
channel = sim._channels()
osc = list(zip(*activation))
phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phasediff_c = np.round(diff(phase_abs[0],phase_abs[1]),6)
ei_c = [round(np.sum(cha)*(1-H2(eps)),6) for cha in channel]
max_ei_c = max([np.sum(cha) for cha in channel])
sim = Simulate4Layers( dim,
eps,
coupling=coupling,
init=causal_init,
noeffect=-1,
steps=1,
draw=None,
)
activation = sim._activations()
channel = sim._channels()
osc = list(zip(*activation))
phase_abs = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phasediff_i = np.round(diff(phase_abs[0],phase_abs[1]),6)
ei_i = [round(np.sum(cha)*(1-H2(eps)),6) for cha in channel]
max_ei_i = max([np.sum(cha) for cha in channel])
phase_pairs.append((phasediff_i[-1], phasediff_c[-1]))
ei_pairs.append((ei_i[-1], ei_c[-1]))
savepath = path + sampling + '/'
new_folder(savepath)
if num%100==99:
print(f'Done {num:0{len(str(extremes))}d}')
with open(savepath+f"eps={round(eps,3):.3f}_phase_pairs.txt", 'w', encoding='utf-8') as f:
json.dump(phase_pairs, f, indent=1)
with open(savepath+f"eps={round(eps,3):.3f}_ei_pairs.txt", 'w', encoding='utf-8') as f:
json.dump(ei_pairs, f, indent=1)
phases_i, phases_c = zip(*phase_pairs)
ei_i, ei_c = zip(*ei_pairs)
phase_space = np.linspace(0,m.pi,100+1)
ei_space = np.linspace(0,np.max([ei_i,ei_c]),100+1)
phase_dist_i = [len([ph for ph in phases_i if low<=ph<high])/extremes for low,high in zip(phase_space[:-1],phase_space[1:])]
phase_dist_c = [len([ph for ph in phases_c if low<=ph<high])/extremes for low,high in zip(phase_space[:-1],phase_space[1:])]
max_ei = max(max_ei_i, max_ei_c)
ei_dist_i = [len([e for e in ei_i if round(e/(1-H2(eps)))==val])/extremes for val in range(max_ei)]
ei_dist_c = [len([e for e in ei_c if round(e/(1-H2(eps)))==val])/extremes for val in range(max_ei)]
qtplot(f'Phase distribution for dim={dim} eps={eps:.3f} with 4 layers',
[phase_space[:-1]]*2,
[phase_dist_i, phase_dist_c],
['Phase dist with ei',
'Phase dist without ei'],
x_tag = 'phase',
y_tag = 'density',
export=True,
path=savepath,
filename=f'Phase dist eps={round(eps,3):.3f} dim={dim} extremes={extremes}.png',
close=True)
qtplot(f'EI distribution for dim={dim} eps={eps:.3f} with 4 layers',
[range(max_ei)]*2,
[ei_dist_i, ei_dist_c],
['EI dist with ei',
'EI dist without ei'],
x_tag = 'ei',
y_tag = 'density',
export=True,
path=savepath,
filename=f'EI dist eps={round(eps,3):.3f} dim={dim} extremes={extremes}.png',
close=True)
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')