Add evaluations and examples

This commit is contained in:
timofej 2023-08-23 16:25:27 +02:00
parent 28e0ecb4a3
commit 1903bed60e
7 changed files with 474 additions and 2 deletions

View File

@ -0,0 +1,111 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 21 14:59:22 2023
@author: astral
"""
import json
import math as m
import numpy as np
from numpy.linalg import norm
from datetime import datetime
from random import sample as choose
from plot import qtplot
eps_space = list(np.linspace(0.01,0.2,20))
def resultant(sample):
phase_x = [m.cos(ind) for ind in sample]
phase_y = [m.sin(ind) for ind in sample]
return (np.average(phase_x), np.average(phase_y))
def H2(x):
return -x*m.log2(x)-(1-x)*m.log2(1-x)
extremes = 50000
maxdt = 500
for dim in [7]:
for eps in eps_space:
path=f'/cloud/Public/_data/neuropercolation/4lay/steps=1000100/dim={dim:02}/'
try:
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f:
phase_diff = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
activation = json.load(f)[100:]
osc = list(zip(*activation))
phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f:
json.dump(list(phase_diff), f, indent=1)
all_res = norm(resultant(phase_diff))
try:
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f:
ei = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f:
channels = json.load(f)[100:]
ei = [np.sum(cha)*(1-H2(eps)) for cha in channels]
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f:
json.dump(ei, f, indent=1)
bot_ei = sorted(enumerate(ei[:-maxdt]), key = lambda x: x[1])[ extremes]
top_ei = sorted(enumerate(ei[:-maxdt]), key = lambda x: x[1])[-extremes]
bot_ei_pool = [ei for ei in enumerate(ei[:-maxdt]) if ei[1] <= bot_ei[1]]
top_ei_pool = [ei for ei in enumerate(ei[:-maxdt]) if ei[1] >= top_ei[1]]
bot_eis = choose(bot_ei_pool, extremes)
top_eis = choose(top_ei_pool, extremes)
bot_ind = [enum[0] for enum in bot_eis]
top_ind = [enum[0] for enum in top_eis]
bot_res = []
top_res = []
for dt in range(maxdt):
bot_pha = [phase_diff[i+dt] for i in bot_ind]
top_pha = [phase_diff[i+dt] for i in top_ind]
bot_res.append( norm(resultant(bot_pha)) )
top_res.append( norm(resultant(top_pha)) )
if dt%100==99:
print(f'Done dt={dt}')
qtplot(f'Diachronic resultant for dim={dim} with 4 layers',
[np.array(range(maxdt))]*3,
[bot_res, top_res, [all_res]*maxdt],
['Resultant ev of bottom 100 ei', 'Resultant ev of top 100 ei', 'Average Resultant'],
x_tag = 'dt',
y_tag = 'concentration',
export=True,
path=path,
filename=f'Diachronic Resultant for eps={round(eps,3)} dim={dim} extremes={extremes}.png',
close=True)
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')
# qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers',
# [[0]+eps_space]*2,
# [max(av_ei)*diff_res, av_ei],
# ['Resultant', 'avEI'],
# export=True,
# path=path,
# filename=f'Resultant and EI for dim={dim}.png',
# close=True)

View File

@ -0,0 +1,60 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 21 14:59:22 2023
@author: astral
"""
import json
import math as m
import numpy as np
from datetime import datetime
from plot import qtplot
eps_space = list(np.linspace(0.005,0.5,100))
def resultant(sample):
phase_x = [m.cos(ind) for ind in sample]
phase_y = [m.sin(ind) for ind in sample]
return (np.average(phase_x), np.average(phase_y))
def H2(x):
return -x*m.log2(x)-(1-x)*m.log2(1-x)
for dim in [7]:
diff_res = [0]
av_ei = [0]
for eps in eps_space:
path=f'/cloud/Public/_data/neuropercolation/4lay/steps=100000/dim={dim:02}/'
with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
activation = json.load(f)[100:]
osc = list(zip(*activation))
phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi
res = np.linalg.norm(resultant(phase_diff))
diff_res.append(res)
with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f:
channels = json.load(f)[100:]
ei = [np.sum(cha)*(1-H2(eps)) for cha in channels]
av_ei.append(np.average(ei))
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')
qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers',
[[0]+eps_space]*2,
[diff_res, av_ei],
['Resultant', 'avEI'],
export=True,
path=path,
filename=f'Resultant and EI for dim={dim}.png',
close=True)

View File

@ -0,0 +1,94 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 21 14:59:22 2023
@author: astral
"""
import json
import math as m
import numpy as np
from numpy.linalg import norm
from datetime import datetime
from random import sample as choose
from plot import qtplot
eps_space = list(np.linspace(0.01,0.2,20))
def resultant(sample):
phase_x = [m.cos(ind) for ind in sample]
phase_y = [m.sin(ind) for ind in sample]
return (np.average(phase_x), np.average(phase_y))
def H2(x):
return -x*m.log2(x)-(1-x)*m.log2(1-x)
extremes = 50000
maxdt = 500
for dim in [7]:
for eps in eps_space:
path=f'/cloud/Public/_data/neuropercolation/4lay/steps=1000100/dim={dim:02}/'
try:
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'r', encoding='utf-8') as f:
phase_diff = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_activation.txt", 'r', encoding='utf-8') as f:
activation = json.load(f)[100:]
osc = list(zip(*activation))
phase = np.array([[np.arctan2(*act[::-1]) for act in osc[i]] for i in range(2)])
phase_diff = (phase[1]-phase[0]+m.pi)%(2*m.pi)-m.pi
with open(path+f"eps={round(eps,3):.3f}_phase_diff.txt", 'w', encoding='utf-8') as f:
json.dump(list(phase_diff), f, indent=1)
all_res = norm(resultant(phase_diff))
try:
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'r', encoding='utf-8') as f:
ei = json.load(f)
except:
with open(path+f"eps={round(eps,3):.3f}_channels.txt", 'r', encoding='utf-8') as f:
channels = json.load(f)[100:]
ei = [np.sum(cha)*(1-H2(eps)) for cha in channels]
with open(path+f"eps={round(eps,3):.3f}_ei.txt", 'w', encoding='utf-8') as f:
json.dump(ei, f, indent=1)
pha_divs = 8
pha_sort = [0]*pha_divs
pha_sort = [[pha for pha in list(enumerate(phase_diff))[:-maxdt] if i*m.pi/pha_divs <= abs(pha[1]) <= (i+1)*m.pi/pha_divs] for i in range(pha_divs)]
dia_ei = [[np.average([ei[pha[0]+dt] for pha in pha_div]) for dt in range(maxdt)] for pha_div in pha_sort]
qtplot(f'Diachronic EI for dim={dim} with 4 layers',
[list(range(maxdt))]*pha_divs,
dia_ei,
[f'EI evolution for initial phase in [{div}pi,{div+1}pi]' for div in range(pha_divs)],
x_tag = 'dt',
y_tag = 'average EI',
colors = 'rgb',
export=True,
path=path,
filename=f'Diachronic EI for eps={round(eps,3)} dim={dim} pha_divs={pha_divs}.png',
close=True)
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')
# qtplot(f'Resultant and EI evolution for dim={dim} with 4 layers',
# [[0]+eps_space]*2,
# [max(av_ei)*diff_res, av_ei],
# ['Resultant', 'avEI'],
# export=True,
# path=path,
# filename=f'Resultant and EI for dim={dim}.png',
# close=True)

138
evaluation/plot.py Normal file
View File

@ -0,0 +1,138 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 21 16:12:53 2023
@author: astral
"""
import sys
import os
import pyqtgraph as qt
import pyqtgraph.exporters
from PyQt5.QtGui import QFont
import math as m
import numpy as np
def __get_color(factor, gamma=0.8):
frequency=380+factor*(750-380)
lightfrequency = 0.4*(3*np.log10(frequency/2)-2)/4
wavelength = 300/lightfrequency
'''steps of 10Hz: 22 means 220Hz'''
'''This converts a given wavelength of light to an
approximate RGB color value. The wavelength must be given
in values between 0 and 1 for 0=380nm through 1=750nm
(789 THz through 400 THz).
Based on code by Dan Bruton
http://www.physics.sfasu.edu/astro/color/spectra.html
'''
wavelength = float(wavelength)
if wavelength >= 380 and wavelength <= 440:
attenuation = 0.3 + 0.7 * (wavelength - 380) / (440 - 380)
R = ((-(wavelength - 440) / (440 - 380)) * attenuation) ** gamma
G = 0.0
B = (1.0 * attenuation) ** gamma
elif wavelength >= 440 and wavelength <= 490:
R = 0.0
G = ((wavelength - 440) / (490 - 440)) ** gamma
B = 1.0
elif wavelength >= 490 and wavelength <= 510:
R = 0.0
G = 1.0
B = (-(wavelength - 510) / (510 - 490)) ** gamma
elif wavelength >= 510 and wavelength <= 580:
R = ((wavelength - 510) / (580 - 510)) ** gamma
G = 1.0
B = 0.0
elif wavelength >= 580 and wavelength <= 645:
R = 1.0
G = (-(wavelength - 645) / (645 - 580)) ** gamma
B = 0.0
elif wavelength >= 645 and wavelength <= 750:
attenuation = 0.3 + 0.7 * (750 - wavelength) / (750 - 645)
R = (1.0 * attenuation) ** gamma
G = 0.0
B = 0.0
else:
R = 0.0
G = 0.0
B = 0.0
R *= 255
G *= 255
B *= 255
return (int(R), int(G), int(B))
def plot_execute():
if sys.flags.interactive != 1 or not hasattr(qt.QtCore, 'PYQT_VERSION'):
qt.QtGui.QApplication.exec_()
def qtplot(titletext, spaces, vals, names, x_tag=f'noise level {chr(949)}', y_tag=None, colors=None, export=False, path=None, filename=None, lw=4, close=False):
linewidth = lw
#app = qt.mkQApp()
ph = qt.plot()
ph.showGrid(x=True,y=True)
ph.setXRange(np.min(spaces), np.max(spaces))
# ph.setYRange(0.0, 6)
#ph.setTitle(title='Susceptibility density evolution for different automaton sizes', offset=(1000,500))#.format(dim))
ph.setLabel('left', y_tag)
ph.setLabel('bottom', x_tag)
#ph.setXRange(0, 0.15)
ph.addLegend(offset=(400, 30))
#s = ph.plot(np.linspace(0.01,0.32,32), eps_max_freq0, title=sp_Title, pen='w')
#s = ph.plot(np.linspace(0.01,0.32,32), eps_max_freq1, title=sp_Title, pen='w')
if colors=='rgb':
colors=[__get_color(fac/(len(vals)-1)) for fac in range(len(vals))]
elif colors is None:
colors=['r', 'g', 'b', 'y', 'c', 'm', 'w', (100,100,0), (0,100,100), (100,0,100)]
for i in range(len(vals)):
s = ph.plot(spaces[i], vals[i],
name=names[i], pen=qt.mkPen(colors[i], width=linewidth))
title_item = qt.TextItem(text=titletext, anchor=(0.5, 7), color='grey')
ph.addItem(title_item)
title_item.setPos(ph.getViewBox().viewRect().center())
font = QFont()
font.setPointSize(14) # Adjust the font size as needed
title_item.setFont(font)
if export:
if not os.path.exists(path):
os.makedirs(path)
exporter = qt.exporters.ImageExporter(ph.plotItem)
# set export parameters if needed
exporter.parameters()['width'] = 1200 # (note this also affects height parameter)
# save to file
exporter.export(path+filename)
def handleAppExit():
# Add any cleanup tasks here
print("closing")
if close:
ph.close()
# app.aboutToQuit.connect(handleAppExit)
# app.exec_()

View File

@ -5,7 +5,7 @@ Created on Fri Aug 18 19:05:04 2023
@author: astral @author: astral
""" """
from datetime import datetime
import numpy as np import numpy as np
from neuropercolation import Simulate1Layer from neuropercolation import Simulate1Layer
@ -23,4 +23,4 @@ for dim in [49,100]:
).run(evolutions_per_second=30, ).run(evolutions_per_second=30,
last_evolution_step=100000, last_evolution_step=100000,
save_states=False) save_states=False)
print(f'Done eps={eps:.3f} at dim={dim}') print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')

View File

@ -0,0 +1,37 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 18 19:05:04 2023
@author: astral
"""
from datetime import datetime
import numpy as np
from neuropercolation import Simulate2Layers, Simulate4Layers
eps_space = np.linspace(0.005,0.5,100)
#eps_space = np.linspace(0.135,0.15,4)
for dim in [8]:
for eps in eps_space:
eps = round(eps,3)
sim = Simulate4Layers(dim,
eps,
steps=100100,
draw=None,
save='all',
path=f'/cloud/Public/_data/neuropercolation/4lay/steps=100100/dim={dim:02}/',
)
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')
for eps in eps_space:
eps = round(eps,3)
sim = Simulate2Layers(dim,
eps,
steps=100100,
draw=None,
save='all',
path=f'/cloud/Public/_data/neuropercolation/2lay/steps=100100/dim={dim:02}/',
)
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')

View File

@ -0,0 +1,32 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 18 19:05:04 2023
@author: astral
"""
from datetime import datetime
import numpy as np
from neuropercolation import Simulate4Layers
eps_space = np.linspace(0.005,0.5,100)
#eps_space = np.linspace(0.135,0.15,4)
stp = 1000100
for batch in range(1,5):
for dim in [7]:
for eps in eps_space[1:41:2]:
eps = round(eps,3)
cons = [(n,n) for n in range(dim)]+[(n,(n+3)%7) for n in range(dim)]
sim = Simulate4Layers(dim,
eps,
coupling=cons,
steps=stp,
draw=None,
res=2,
save='simple',
path=f'/cloud/Public/_data/neuropercolation/4lay/cons={len(cons)}_steps={stp}/dim={dim:02}/batch={batch}/',
)
print(f'Done eps={eps:.3f} with dim={dim} at {datetime.now()}')